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1 Introduction

How do prices affect the optimal design of taxes? To a large extent, the optimal taxation literature has
ignored the effects of prices on optimal redistribution policies. Indeed, the seminal result of Diamond
and Mirrlees (1971b) states that optimal tax formulas can be derived as if prices were fixed at their
equilibrium level, and leaves implicit the optimal response of taxes to price changes.1 Yet, empirically
price changes are ubiquitous, and they tend to correlate with household income. Recent work shows that
heterogeneous inflation rates across products consumed by low- and high-income households played
an important role for purchasing power inequality in the United States (e.g., McGranahan and Paulson
(2005), Kaplan and Schulhofer-Wohl (2017), Jaravel (2019), Argente and Lee (2020), Klick and Stockburger
(n.d.)). Despite the prevalence of price changes, to date we lack the tools to characterize their potential
effects on optimal taxation.

In this paper, we develop a theoretical framework to analyze the effect of prices on optimal tax design,
and we quantitatively estimate their impact. We provide an explicit characterization of the impact of
prices on the marginal social value of transfers, on labor supply, and on labor supply elasticities. Further-
more, we show that when the response of the tax schedule to price changes is non-trivial, a feedback loop
may emerge: taxes shift demand for goods, which can induce a further change in prices through general
equilibrium adjustments (e.g., returns to scale), and a new response of the tax schedule. Equilibrium
prices are still a sufficient statistic in our optimal tax formulas, but finding the new equilibrium prices
requires characterizing this feedback loop and, in particular, the response of the supply side of the
economy.

To facilitate comparison with prior work, we work with a standard, static Mirrlees model: agents have
preferences over multiple consumption goods and leisure, and labor is the only factor of production;
preferences are weakly separable between consumption and labor, as in the Atkinson-Stiglitz benchmark.
This setting allows us to capture non-homothetic spending patterns across the income distribution while
focusing on a single tax instrument for redistribution, the nonlinear income tax.

The main challenge is that the channels through which prices shape redistribution are not explicit,2 as
they appear only implicitly in the first-order conditions determining the optimal marginal tax rates. To
overcome this issue and understand the economic forces at play, we use a comparative static approach:
we derive the equations governing the derivatives of the income tax with respect to prices. This approach
allows us to characterize the first-order responses of taxes to price changes in terms of observable
statistics. Thus, it allows us to evaluate how redistribution policies should have responded to recent
heterogeneous inflation trends, and to uncover the mechanisms through which prices operate.

We start by analyzing the "partial equilibrium” effects of prices, omitting the general equilibrium
adjustments that result from shifts in aggregate demand for goods.3 We show that the impact of prices
on taxes is governed by the marginal propensity to spend (MPS) on the products experiencing a price
change. Indeed, the MPSs determine the marginal price indices of households, i.e. the prices of the
baskets of goods they would consume with an additional dollar of income.

The marginal propensity to spend is central to understand the impact of price changes on the value of
redistribution and on labor supply. To illustrate, consider an increase in the price of a product for which
the marginal propensity to spend increases with income, which we label a "luxury product”. First, a price

1Standard optimal tax formulas are first-order conditions featuring endogenous variables that depend on prices, such as the
marginal utility of disposable income.

2The added difficulty in our case is that non-homothetic demand systems do not yield closed form solutions in general.
3In the main text, we consider a benchmark case where utility is quasilinear (at initial prices) and the social welfare function

is linear (i.e., the Pareto weights depend on the agents’ productivity but not on their income). In Online appendix A3, we extend
these result to non-linear social welfare functions (which can captures a decreasing social value of income) and more general
labor supply functions. Our results are qualitatively similar in these more general cases.
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increase on a luxury good raises the marginal price index of higher-income households relatively more
than that of lower-income households. This means that higher income households can now buy less
with an additional dollar of income. Therefore, the social value of a dollar transfer from higher-income
to lower-income households increases. Second, as the decrease in marginal purchasing power is larger
at higher income levels, the price increase generates a negative income effect, which is larger as income
increases: a dollar transfer disincentivizes labor supply relatively more at higher income levels, and thus
a price increase on a luxury good reduces the efficiency cost of taxation. Since both the cost of taxation
and the social value of transfers to higher-income decreases, the marginal tax rates increase everywhere.
As the new tax system has to be budget neutral, the burden of taxation decreases at the bottom of the
distribution and increases at the top. These channels are at play even when it is feasible to compensate
all agents at no fiscal cost – for example when the price of luxury goods increases while necessity goods
become more affordable so that the average price change is nil. Perhaps surprisingly, we find that, far
from compensating price movements, the optimal tax system amplifies their redistributive effects: an
increase in the price of luxury goods induces more redistribution at the bottom of the income distribution;
the opposite is true when necessities become more expensive. These channels do not operate when
preferences are homothetic as all agents are equally impacted by price changes.4

Our analysis of the partial equilibrium problem thus reveals a meaningful interaction between the
direct effects of prices and taxes, as price changes are not merely compensated for. While these direct
effects operate irrespective of the supply side specification, we show that in general equilibrium, the
elasticity of prices with respect to aggregate consumer demand across products becomes pivotal to
evaluate the interplay between optimal taxes and prices. Empirically, the literature shows that product
markets with larger demand tend to have higher productivity and lower prices due to several channels.
For instance, higher demand increases the incentives to enter a market, to innovate, and to compete,
which leads to lower marginal cost, lower markups, larger product variety, and lower consumer price
indices. These channels have been documented in a recent empirical literature (e.g., Costinot et al. (2019),
Jaravel (2019), Faber and Fally (2021)) as well as in a long-standing theoretical literature (e.g., Romer
(1990), Aghion and Howitt (1992), Melitz (2003)).

To capture the key feature of product markets (the relationship between demand and consumer
prices), we adopt a sufficient statistics approach. We assume that firms make no profit and summarize
the supply side of the economy through a key statistic, the elasticity of prices with respect to a change in
market size. The only restriction imposed by this assumption is that prices are set according aggregate
quantities demanded rather than the exact distribution of consumers in each market. For this restriction
to be met, it is sufficient for the "product” in each market to be a homothetic aggregate of subvarieties
produced competitively or monopolistically. The prices derived in our model can be interpreted as price
indexes for the subvarieties in each market derived from standard aggregator (e.g., CES, Kimball, translog
demand system, etc.). As such, we cover a wide range of standard structural models of the supply side,
including models with firm selection (Melitz (2003)), variable markups (Feenstra and Weinstein (2017)),
and innovation (Bustos (2011)). For completeness, we also consider the standard Diamond-Mirrlees
benchmark where goods are produced competitively and all profits are taxed and rebated to households
in a lump sum fashion.

When product prices decrease as their market expands, we find that the redistributive effects of price

4We also consider the case of a concave social welfare function, which we report in the Online Appendix due to space
constraints. The concavity of social preferences introduces a counterbalancing force: reducing the income of any agents makes
transfer towards them more valuable. The amplification discussed above is therefore muted: when, for example, price changes
favor high-income households, marginal tax rates decrease by less than in the linear case and lower-income households bear a
relatively smaller fraction of the tax burden. However, we find that redistribution towards higher-income households still occurs
at the new optimum and the welfare of households at the bottom of the distribution still declines.
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changes and their amplification through taxes are strengthened in general equilibrium.5 We show there
are three channels governing the changes in aggregate demand across products, leading to amplification.
To illustrate, consider an increase in the relative price of luxuries.6 First, households reallocate their
spending to other products through standard substitution effects, leading to a fall in demand for luxuries.
Second, a relative increase in the price of luxuries has a negative income effect on higher income house-
holds, as luxuries constitute a larger portion of their consumption basket. Higher income households
have a higher propensity to spend on luxuries, so the aggregate share of luxuries decreases through
income effects. Third, there are several changes in optimal taxes. As explained above, it becomes more
valuable to redistribute to lower income households: tax rates increase along the income distribution.
Income is reallocated to lower income households, which amplifies the decline in the share of luxuries.
The markets for luxuries shrink relative to other markets: the relative price of luxuries increases further
through a supply side response, which generates a larger decline of the share of luxuries and more
redistribution towards lower income households. Therefore, the government amplifies both the inflation
of luxuries prices and their redistributive impact through changes in optimal tax rates.7 In addition, by
increasing tax rates, the planner lowers labor supply in the aggregate. As a result, all markets shrink, and
all products become more expensive. As households’ aggregate real income decreases, they shift their
consumption towards necessities, which amplifies the hike in luxuries prices. Thus, optimal tax policy
not only amplifies the redistributive effects of an increase in luxury goods’ prices by reallocating income
to poorer households, but also by reducing aggregate income.8 These channels operate in any supply side
model with elastic prices, including in the canonical Diamond-Mirrlees setting with non-constant return
to scale production functions (although this effect remains implicit in the standard Diamond-Mirrlees tax
formulas).

Finally, by reallocating consumption to different markets, prices and taxes may affect the average
elasticity of prices to market size in the economy. For example, if more productive markets expand,
then taxation becomes more costly and it is optimal to reduce distortions by lowering marginal tax
rates. The impact of taxes on the average productivity of the economy is of first-order importance in
our benchmark model, while it does not matter in the Diamond-Mirrlees specification. Indeed, as our
model features variable prices and no profits, as a result of free entry, it is generally inefficient, which
leaves a role for corrective taxation. In light of our reduced form specification, the inefficiency is best
interpreted as an aggregate demand externality. Agents do not internalize that consuming more of a
good expands its market, which improves efficiency, e.g. through endogenous innovation or stronger
competition.9 The correction can be implemented via commodity taxes and a wage subsidy. Commodity
taxes efficiently allocate consumption to each market: if increasing demand for a product lowers its price
by more than the average market size elasticity, then it is optimal to subsidize this product. The average
demand externality across markets is then corrected by a flat wage subsidy. While the correction is by
itself simple, our comparative statics approach reveals a non-trivial interaction between redistributive
and corrective taxation: the corrective work subsidy is regressive, which tends to increase consumption

5When prices increase as the market expands (in contrast with our baseline case featuring increasing returns), the redistribu-
tive effects of prices are muted through general equilibrium effects.

6By increase in the relative price of luxuries, we mean an increase in the price of luxuries and a decrease in the price of all
other goods, keeping the price of the average consumption basket constant.

7When the relative price of necessities increases, the effects are symmetric: the income tax becomes more regressive and the
share of necessities declines.

8When the price of necessities increases, tax rates decrease. This stimulates labor supply, all products become cheaper and, as
real income increases, consumption is reallocated towards luxuries. This further increases the relative price of necessities, which
benefits higher income households.

9In the Diamond-Mirrlees specification, if an increase in demand reduces prices, it also decreases firms’ profit and house-
holds’ disposable income. The two effects cancel each other and there is no externality.
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of luxury products and reduce their prices. When preferences are non-homothetic, these price changes
affect the optimal redistributive tax through the channels previously described. Even when preferences
are homothetic, if the social welfare function is concave, we find that higher-income households will
contribute more to the financing of the subsidy, and that the response of the optimal tax schedule is
non-trivial.

Building on these theoretical insights, in the quantitative section of the paper we evaluate the
optimal response of taxes to the price changes observed in the data in recent years, and we examine
more generally how our benchmark specification – with non homothetic preferences and downward
sloping supply curves – affects optimal redistribution policies. We first implement our comparative static
approach. While it only gives the first order response of taxes to price changes, it has two advantages: we
can directly use recent causal estimates of the elasticity of prices to market size to evaluate supply side
responses to shifts in demand, and we can non parametrically fit non-homothetic spending patterns. By
linking the Consumer Expenditure Survey (CEX) and the Consumer Price Index (CPI) datasets, we obtain
observed price changes and households’ spending across 248 product categories for the period 2004 to
2015, covering the entire consumption basket of American households. Empirically, inflation was lower
in product categories with higher income elasticities. We find that, in response, it is optimal to reduce
redistribution and set lower marginal tax rates, with a fall in marginal tax rates of about 8 percentage
points at the bottom of the income distribution (relative to the observed tax schedule).10

While we treat the price changes observed in the data as exogenous in our first analysis, empirically
prices respond endogenously to shifts in demand, e.g. those stemming from growing income inequality.
We use our comparative statics approach to characterize quantitatively the optimal response of the tax
schedule to exogenous shifts in the income distribution, accounting for the endogenous response of
prices. Using publicly available statistics on the income distribution from the U.S. Census from 2004 to
2015, we find that income was stagnant at the bottom of the distribution, and increased at faster and
faster rates with higher incomes. This spread in the income distribution leads to a more redistributive
tax schedule: marginal tax rates increase in U-shaped fashion to take advantage of the thinning mass
of taxpayers in the middle of the distribution. However, as higher income households become richer,
the markets for luxury goods expand, which lower their equilibrium prices. Due to the large empirical
estimates of price elasticities to market size, this direct effect of income inequality on prices makes the
optimal tax schedule less redistributive, which almost entirely offsets the redistributive response of
optimal taxes to rising inequality. These results show that it is crucial to jointly study shifts in the skill
distribution and their effect on prices to assess the effects of income inequality on optimal tax design.

Finally, we make parametric assumptions on non-homotheticities, using non-homothetic CES (nhCES)
preferences as in Hanoch (1975), Matsuyama (2019), and Comin et al. (2021). We then study the quantita-
tive importance of increasing returns to scale, non-homotheticities and price shocks for optimal tax rates
and welfare across the skill distribution. By introducing parametric assumptions on preferences, these
analyses are complementary with the analysis of first-order approximations, because they characterize
how our new channels affect the optimum when accounting for potential non-linearities. They also allow
us to characterize the quantitative importance of non-homotheticities for the optimal tax schedule.

First, we find that the wage subsidy used to correct for inefficiencies is quantitatively large. With an
average price elasticity of 0.30, consistent with causal estimates, the net of tax wage increases everywhere
by 43%. However, a naive implementation of this work subsidy, without considering the interaction

10Since empirical studies stress the importance of using granular data to properly measure inflation heterogeneity, we also
estimate the impact of price changes in the subset of goods covered by the Nielsen scanner data. We find that the sensitivity of the
tax rate to change in the prices is larger when we consider granular products rather than goods aggregated at a level comparable
to the CEX. Our baseline results using the CEX-CPI data are therefore likely to underestimate the impact of price changes on
optimal redistribution.
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with redistributive motives, would significantly overstate the regressive impact of this corrective tax.
Indeed, with a logarithmic social welfare function, it is optimal for the cost of the work subsidy to be
predominantly paid by high-skill agents, hence marginal tax rates do not fall as much as with the naive
correction: at the optimum marginal tax rates only fall by 4 percentage points at the bottom of the
distribution, while a naive implementation would reduce them by 14 percentage points. This finding
shows that understanding the interaction between corrective and redistributive motives is crucial to the
overall design of tax systems in practice.

Second, relative to the optimal tax schedule with homothetic preferences, we find that non-
homotheticities imply more redistribution. Relative to the optimum under homothetic preferences,
marginal taxes increase over the full range of the income distribution. The increase is more pronounced
at the bottom of the income distribution, with an increase in marginal tax rates of about 6pp for levels
of earned income below $20,000. The increase is about 2pp at an income level of $100,000, and then
gradually decreases, reaching levels close to zero above $300,000. Thus, the simulations show that
non-homoheticities have a significant quantitative impact on optimal marginal tax rates. We show that
this increase in redistribution can be explained by the change in equilibrium prices and in the marginal
utility of redistribution across the skill distribution.11

Third, using the nhCES parametric framework, we confirm the results obtained with the first-order
approximation about the impact of observed heterogeneous price shocks: it is desirable for the planner to
redistribute more toward high-income households, by reducing marginal tax rates at the bottom of the
income distribution.

In all simulations, a unifying mechanism operates: changes in equilibrium prices and the distribution
of marginal propensities to consume govern the change in the optimal tax schedule. This mechanism
explains both why the optimal tax schedule is more redistributive when we take into account non-
homothetic spending patterns, and why observed inflation heterogeneity benefiting higher income
households generates a regressive response of the optimal tax schedule.

Relative to prior work, the main contribution of this paper is to provide a theoretical and quantitative
characterization of the impact of prices on optimal tax design. We thus relate to several strands of
literature. First, in prior work the effect of prices on the tax schedule has remained implicit, as standard
tax formulas depend on endogenous variables that depend on prices, such as the marginal utility
of disposable income. Several papers have highlighted the implications of specific assumptions on
consumers’ preferences for tax design, including preference heterogeneity (e.g., Saez (2002), Diamond
and Spinnewijn (2011)) and consumers’ myopia (e.g., Allcott et al. (2019)). Instead, we show theoretically
and quantitatively that prices play an important role even in the canonical setting where the utility
function is separable between labor and all commodities, i.e. no indirect taxes need to be used, as in
Atkinson and Stiglitz (1976). We explicitly characterize the impact of prices on the tax schedule, both in
partial equilibrium and general equilibrium, providing decompositions isolating the economic forces at
play. Second, our results contribute to a growing strand of the optimal taxation literature that has isolated
the general equilibrium effects of taxes, focusing on wages (e.g., Rothschild and Scheuer (2013), Sachs et
al. (2020)); we complement these analyses by characterizing the general equilibrium impact on prices in
the presence of non-homotheticities. Third, although imperfect competition is not our focus, our work
relates to a growing literature on optimal taxation in the presence of imperfect competition, in which
endogenous prices or wages play a role for redistribution from firm owners toward workers (e.g., Boar

11As the relative price of the necessity bundle decreases, it is optimal to redistribute more to those with a higher marginal
propensity to consume on necessities, which induces further tax changes and changes in labor supply, etc. The strength of these
feedback loops depends on the parameters governing increasing returns and social preferences for redistribution, and we find
them to be large in our calibration. We document the robustness of our results to alternative parameter values.
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and Midrigan (2019), Eeckhout et al. (2021), Kushnir and Zubrickas (2020)).12 Instead, we demonstrate
the importance of non-homotheticities and show that prices play an important role even in the canonical
setting with no profit or full profit taxation, as in Diamond and Mirrlees (1971b). We thus isolate a
novel mechanism, the amplification of redistribution due to the interaction between price changes and
non-homotheticities.

Furthermore, by studying price changes stemming from increasing returns to scale, this paper
contributes to a growing literature on optimal tax design and endogenous productivity. Recent work
highlights the role that taxes may have on entrepreneurial effort (e.g, Jaimovich and Rebelo (2017), Bell
et al. (2018)) and draws implications for optimal taxation of top earners (e.g, Jones (2019), Bell et al.
(2019)).13 In contrast, we study productivity effects that are induced by changes in demand, through
returns to scale, and which inherently interact with the income tax schedule. We find that the impact of
taxes on productivity through demand and returns to scale is quantitatively large, implying substantial
adjustments to the optimal tax schedule.

The remainder of the paper is organized as follows. Section 2 presents the model. Section 3 derives
the optimal income and commodity taxation formula in terms of sufficient statistics. Section 4 uses
the comparative static approach to characterize the sensitivity of optimal tax rates to price shocks, the
elasticity of prices to market size, and shifts in the skill distribution. The quantitative analysis is carried
out in Section 5. Supplemental results and proofs are reported in the Online Appendix.

2 Model

We consider an economy with n sectors, each producing a differentiated good i sold at price pi. Labor
is the only factor of production and the wage is normalized to 1. There is a mass 1 of households with
different types θ distributed according to π(θ). We now describe in the demand and supply sides of the
economy as well as the social planner problem.

Households. We use the standard notation where pre-tax labor income z, rather than hours worked,
enters the utility function. Households have weakly separable preferences in consumption {c1, ..., cn} and
labor income z. Their utility is given by:

U(u(c1, .., cn), z, θ),

where u is the sub-utility function of consumption. These are the standard Atkinson-Stiglitz preferences
and consumption choices only depend on consumer prices and post tax income z∗.

12These papers highlight the importance of rents that accrue to firm owners, which can be redistributed through taxation of
income, endogenous price changes and commodity taxes. In contrast, our results continue to apply in settings with no rents,
i.e. with full profit taxation or zero profit. In particular, Kushnir and Zubrickas (2020) study optimal taxation with endoge-
nous prices, decreasing returns to scale, positive firm profits, and homothetic utility. Their Appendix A.3 examines the case of
non-homothetic preferences, but the impacts of non-homotheticities and prices remain implicit in their tax formulas through
endogenous variables that depend on prices, such as the marginal utility of disposable income. In contrast, our results do not
depend on the taxation of profits and provide a full characterization of the role of non-homotheticities. The intuition for their
main result is that, when profits are not fully taxed, the social planner uses the price level as an additional redistributing tool:
a decrease in the price level benefits low-productivity agents as they can afford more consumption, but hurts high-productivity
agents through a decrease in firm profits. Instead, our price effects operate through non-homotheticities and changes in the
marginal utility of income at different income levels.

13A limitation of this approach, from the perspective of optimal income and commodity taxation, is that there may exist
distinct policy tools, such that the R&D tax credits, which may be sufficient to affect inventors’ and entrepreneurs’ incentives
appropriately, effectively leaving the optimal tax problem unchanged. For an analysis of optimal R&D policy in a model with
heterogeneous firms, see Akcigit et al. (2016).
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The Atkinson-Stiglitz specification allows us to capture non-homothetic spending patterns across the
income distribution, and thus the unequal effects of price changes, while focusing on a single tax in-
strument for redistribution, the nonlinear income tax. With more general preferences, it would be possi-
ble to use the consumer prices of certain goods to better discriminate between different taxpayers (e.g.,
Saez (2002)). However, we focus on characterizing how unequal price changes for consumption baskets
along the income distribution affect the desirability of redistribution policies. In the interest of providing
a streamlined analysis, it is sufficient to generate heterogeneous baskets of consumption through non-
homothetic Atkinson-Stiglitz preferences rather than idiosyncratic preferences.14

Finally, we denote by v the indirect utility of the agent and by vz∗ the marginal utility of income. v
depends on the agent type θ, on consumer prices and on the tax schedule. Aggregate demand for i across
all households is denoted by Ci.

Pricing Function and Profits. The supply side of the economy affects households’ welfare through the
price of commodities (and potentially the rebated firms’ profit). We use a flexible reduced-form specifica-
tion summarizing prices as a function of aggregate quantities produced {Q1, ..., Qn}. The price pi of the
good produced in sector i is given by pi = φi(Q1, ..., Qn). This specification captures a wide range of sup-
ply side models, i.e. production functions and market structures. For example, when the n goods are pro-
duced competitively, the price of i is determined by its marginal cost of production pi = mci(Q1, ..., Qn).
Similarly, when Qi is a homothetic aggregate of sub-varieties (e.g. CES, Kimball, translog) produced mo-
nopolistically by firms in sector i, the price of the aggregate will be a function of the vector {Q1, ..., Qn}.
Thus, our specification encompasses a large set of structural models of the supply side, including models
with firm selection (Melitz (2003)), variable markups (Feenstra and Weinstein (2017)), and endogenous
innovation (Bustos (2011)).15

An important statistic for our analysis is the elasticity of the price pi to market size. It captures how
the price of i reacts to a change in the demand for j. We denote by A the matrix of market size elasticities,
with Aij = −Qj/pi dφi/dQj. While there are no a priori sign restrictions on the matrix A, empirical stud-
ies (e.g., Costinot et al. (2019), Jaravel (2019), Faber and Fally (2021)) find that prices decrease in response
to an increase in market size. Thus, A is defined such that Qi/pi∂pi/∂Qi = −Aii, with Aii positive in our
benchmark specification.16 This matrix will be crucial: when the tax rate is modified, it shifts households’
income and thus aggregate demand for the n goods, which affects prices. The matrix A is again a reduced
form object which can be linked to structural parameters of fully specified model. In the competitive case,
A is given by the matrix of gradients of the marginal cost: Aij = −Qj/pi ∂mci/∂Qj. With imperfect com-
petition, A captures both the change in marginal cost and the potential change in mark-ups. A will be a
sufficient statistic for the supply side of the economy:17 since we have direct reduced-form estimates of the
market size elasticity of prices,18 we do not need to take a stand on the precise channels (competitiveness,
technological change, etc.) through which demand for goods affects prices. We will sometime assume

14Indeed, the heterogeneous welfare impacts of price changes only depend on the heterogeneity in households’ expenditure
shares, whether they stem from idiosyncratic preferences or households’ income levels.

15Our reduced-form specification excludes models where the identity of the consumers of i matters for pi. For example, if a
monopoly produces the n goods, prices may depend on the distribution of consumers across markets rather than on the aggregate
demand for each good (e.g., Weyl and Fabinger (2013)). We also exclude dynamic growth models (e.g. Romer (1990), Aghion
and Howitt (1992)): focusing on static models of innovation, as in Bustos (2011), facilitates the comparison to the workhorse
Mirrlees model of optimal taxation, and the channels we uncover about the interplay between endogenous prices and non-
homotheticities would continue to apply in dynamic models. For an analysis of optimal taxation with homothetic preferences in
a dynamic growth model, see Aghion et al. (2013).

16Our results remain valid with negative Aii.
17The fact that, conditional on equilibrium prices, the matrix A is a sufficient statistics for the optimal income and commodity

taxes is a result of our analysis.
18We discuss the available estimates in Section 5.1.
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that the matrix A is diagonal: prices only respond to demand in their own market. In this case, we denote
the matrix of market size elasticities by ∆α, with αi = −Qi/pi dφi/dQi (and αi is in general non negative).

To complete our description of the supply side, we need to determine how profits are distributed to
households. In our benchmark specification, we assume that firms make no profit and pay a fixed cost,
which is consistent with entry models where entry is free. This assumption is i line with available empir-
ical evidence (e.g., Jaravel (2019)) suggesting that the downward-sloping supply curves observed in the
data is primarily explained by increased competition: as market size increases, more firms enter which
increases competition and drives prices down through lower markups. In that case, the supply side can be
entirely summarized through the functions φi and the matrix A. For completeness, we will also consider
the case where profits are non zero but fully taxed by the government.

To illustrate our reduced form specification, we provide a simple structural example. We give more
examples of such models in Online Appendix A4. In each market i, identical firms produce subvarieties
qk

i at cost χi(qk
i ). To enter the market, firms pay a fixed labor cost ξi. Agents have identical and symmet-

ric translog preferences (with parameter γi)19 for the different sub-varieties qk
i .20 The equilibrium price

charged by firms p̃i as a function of total physical quantities produced Q̃i is given by:

p̃i =
(

1 + (γiNi)
−1
)

χ′i

(
Q̃i

Ni

)
Pricing Equation(

1 + (γiNi)
−1
)

χ′i

(
Q̃i

Ni

)
Q̃i

Ni
− χi

(
Q̃i

Ni

)
= ξi Entry Equation

The equilibrium number of firms Ni is determined implicitly by the free entry condition, while the op-
timality condition from the firm side determines the price p̃i. Note that with translog, the mark-up
(γiNi)

−1 decreases with Ni.21 Since consumer preferences exhibit love of variety, the welfare relevant
quantity is Qi = exp(−1/(2γiNi))Q̃i. The variety adjusted consumer price index is similarly pi = exp(1/
(2γiNi)) p̃i.22 Therefore, the pricing function φi(Qi) is given by:

pi = φi(Qi) =
(

1 + (γiNi(Qi))
−1
)

χ′i

(
e

1
2γi Ni(Qi)

Qi

Ni(Qi)

)
e

1
2γi Ni(Qi)

with N(Qi) implicitly given by the entry condition. The supply side is entirely summarized by the set of
functions φi(Qi). Finally, denoting ρ > 0 the curvature of marginal cost, the price elasticity αi is:

αi =
(γiNi)

−1

1 + (γiNi)−1
QidNi

NidQi
+

1
2γiNi

QidNi

NidQi
− ρ

(
1− 1 + 2γi

2γiNi

QidNi

NidQi

)
In this case, αi captures the gains from mark-up reduction (the first term), from increased product diversity
(the second) and the loss from decreasing returns (the third term).23

Government. The social planner has access to a full set of commodity taxes and to a non linear income
tax. Although our agents have Atkinson-Stiglitz preferences, we will show that there is a role for com-

19For each agent θ, spending ei(θ) in market i, the homothetic aggregate ci(θ) is given by ln(ci(θ)) = ln(ei(θ))− 1/(2γNi)−
1/Ni

∫
ln(pi(k))dk− γi/(2Ni)

∫ ∫
ln(pi(k))(ln(pi(k′))− ln(pi(k)))dkdk′ with pi(k) the price of sub variety k and Ni the number

of sub variety.
20Note that preferences for the aggregated products can still be non-homothetic.
21Intuitively, with this demand system firms price at a markup over marginal cost; the demand elasticity depends on the

number of varieties in the market: as more varieties enter, consumers perceive varieties as more substitutable, the elasticity of
substitution increases and markups decrease.

22Note that we have p̃iQ̃i = piQi
23Denoting µ = (γi Ni)

−1, we have QdN/NdQ = (1 + 1/(2γi) + 1/(1 + ρ(1 + 1/µ))N exp(−1/(2γi N)))−1 > 0 .
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modity taxation since goods are potentially not priced efficiently.24 As it may be implausible to assume
that the government can tax all goods separately, we will briefly discuss the case where the planner only
has limited commodity taxes in Section 3.2.

The planner’s problem is standard. The planner maximizes the following social welfare function,

∫ θmax

θmin

G(v(θ))π(θ)dθ,

by setting consumer prices {q1, .., qn} and the income tax T(z) subject to three constraints. First, the
producer prices {p1, .., pn} are given by the functions φi, with pi = φi(C1, ..., Cn), with Ci the aggregate
demand for i.25. Second, households optimally choose consumption and labor supply under {q1, .., qn}
and T(z). We denote by f (z) the resulting distribution of income (with dz/dθ f (z) = π(θ)) and by
z∗ disposable income (with z∗ = z − T(z)). Finally, the government’s budget constraint is given by
∑(qi − pi)Ci + E(T) when firms make no profit and by ∑ qiCi − χ(C1, .., Cn) + E(T) when profits are
fully taxed, with χ the cost of producing demanded quantities {C1, ..., Cn}.

Missing Tax. Our benchmark specification with a potentially downward sloping supply curve and no
profit does not have, in general, an efficient supply side. With more tax instruments, the social planner
could regulate firms and improve the allocation. For example, in an entry model, the planner could di-
rectly choose the number of firms in each market to minimize the total cost of production (which includes
the variable cost of production and the entry cost). The planner can always regulate supply in a revenue
neutral fashion, and for a given industrial policy τ that depends on aggregate quantities, there is a new
reduced-form pricing function pi = φτ

i (C1, ..., Cn) which depends implicitly on the regulatory regime.26

In that sense, industrial policies and redistribution are separable: for a given regulatory rule of the supply
side, we take the induced pricing function (and the market size elasticity) as given and derive the optimal
redistributive policy.27 Our results will therefore be valid whether or not industrial policies are optimal,
or missing altogether.

Notation. We use standard notation throughout the paper. ζ is the compensated labor supply elasticity:
when agents face a linear budget constraint q · c = (1 − τ)z + I, ζ = (1 − τ)/z dzh/d(1 − τ), with zh

the Hicksian supply of labor. ζ̃ is the compensated labor supply elasticity corrected for non-linearities in
the budget constraint: ζ̃ = ζ/(1 + zζT′′/(1− T′)). Similarly, η is the income effect with a linear budget
constraint and η̃ the corrected income effect. Regarding spending patterns, ei = qici(z∗, q) denotes the
agent’s expenditure on i, ∂z∗ei the marginal propensity to spend on i, Ei is aggregate spending on i and
∂z∗Ei the average marginal propensity to spend on i. Finally, S is the matrix of cross price derivative of the
aggregate hicksian demand function, with Sij = E(∂qj c

h
i ), and S the matrix of price elasticities Sij = qj/

24For example in the case where profit is fully taxed, the price function could differ from the marginal cost of production.
More interestingly, we will show in section 3.1 that commodity taxes are in general needed when firms make no profit.

25The pricing relationship φi depends on aggregate quantities produced Qi, but we use the equilibrium relationship Qi = Ci.
26In the simple example with translog preferences, the optimal regulation policy can be achieved with a tax τc on variable

costs and an entry subsidy τe set such that the regulatory policy is budget neutral: τcχi = τeξi. The pricing function becomes pi =
(1 + τc)(1 + (γi Ni)

−1)χ′i exp(1/(2γi Ni)), where Ni is implicitly given by the new entry condition (1 + τc)(1 + (γi Ni)
−1)χ′iQi/

Ni − χi = ξi. The optimal τc only depends on Qi and minimizes pi. Therefore, with optimal regulation we have a new pricing
function pi = φ̃i(Qi, τc(Qi)). In a more complex model with firm selection and spillovers across markets, the optimal policy
depends on the full vector Q = {Q1, ..., Qn} and can be implemented through entry subsidies and variety specific taxes. Given
these instruments τ, the regulation problem is simply to minimize ∑ pi(Q, τ)Qi at fixed Q. The resulting prices again depends
only on aggregate quantities.

27In the quantitative analysis, we use the estimated market size elasticity in the United States between 2004 and 2015, which
depends implicitly on the regulatory regime in that period.
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CiSij.

3 Optimal Taxation: First-Order Approach

In this section, we derive first the optimal commodity taxes and then the optimal income tax schedule.28

As shown in Saez (2002), for a type θ agent, a change in the consumer price of i, dqi can be compen-
sated with the non linear transfers dT(z, θ) = −ci(z, q, θ)dqi. This compensation not only keeps the agent
welfare constant, it also leaves labor supply unchanged.29 This compensation is not implementable in
general since consumption depends on the unobserved type of the agent. With our preferences, however,
consumption only depends on consumer prices and on disposable income z∗ = z − T(z) and the com-
pensation can be implemented through a change in the labor tax dT(z) = −ci(z∗, q)dqi. This simple result
will be useful in this section to summarize the effects of consumer price changes by the fiscal cost of the
non-linear compensation.

3.1 Optimal Commodity Tax

We first derive the optimal commodity tax in our benchmark case with no profit. Since consumer price
changes can be compensated with the income tax, the social planner sets the commodity tax to maximize
government revenue, taking into account the cost of compensation. Since the derivation is simple, we go
through it step by step.

Consider a small change in the consumer price of i, dqi. The price change is compensated through
dT(z) = −ci(z∗, q)dqi. As explained in the preamble, the compensated price change does not generate a
labor supply response, so the impact on government revenue is:

dqiCi︸ ︷︷ ︸
mechanical effect

+ ∑(qi − pi)dCi︸ ︷︷ ︸
households’ behavioral response

− ∑ dpiCi︸ ︷︷ ︸
firms’ response

+ E(dT(z))︸ ︷︷ ︸
cost of the compensation

The increase in qi first mechanically raises revenues from the tax on i by Cidqi. Since dqi is compensated,
aggregate consumption reacts through a substitution effect: dC/C = Sdq/q. The supply side responds
to this shift in demand, and producer prices are adjusted through the matrix of market size elasticities A:
dp/p = −ASdq/q. Households’ responses and the supply side response generates a second change in
the revenue of commodity taxes. Finally, since agent are compensated for the consumer price increase,
revenue from the income tax decreases: E(dT) = −Cidqi. Therefore, the total effect on government
revenue is given by:

(
qC′ − pC′(Id− A)

)
S dq

q
.

Since this is true for any consumer price change dq, qC − (Id− A′)pC has to belong to the kernel of S ′,
which is the vector qC: the optimal commodity tax are determined up to a scaling constant β, (1− β)qC =

pC− A′pC. Without loss of generality, we choose the scaling so that on average commodity taxes raise no
revenue.30

28Online Appendix A1 reports the proofs for this section.
29The result is intuitive: this change in the tax schedule compensates the agent for the change in prices given her consumption

basket at her current income level, and it also compensates her for the change in prices that she would face given her optimal
consumption choices at higher or lower income level. Given that her current labor supply was optimal before the price change,
it remains optimal after the price change and the non-linear compensation.

30We do so for two reasons. First, by construction, the average commodity tax is zero. If it was instead positive, consumer
prices would be on average higher than producer prices, which is an implicit income tax. Second, if the revenue from the tax was
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Proposition 1. Consider our benchmark economy where there is no profit and the market size elasticity of prices is
A. We define the average market size elasticity α by:

α =
∑
(

piCi ∑j Aij

)
∑ piCi

,

which captures the elasticity of the average price ∑ piCi with respect to a proportional increase of all market sizes.
The optimal and budget neutral commodity taxes ti (with qi = (1 + ti)pi) are given by:

1 + ti =
1

1− α

(
1−∑ Aji

pjCj

piCi

)
.

In particular, when A is diagonal, we have 1 + ti = (1− αi)/(1− α) and ti = 0 when the αi are equal across
markets.

The commodity tax is purely corrective: its role is to make agents internalize the social benefit of
consumption. When demand for i increases, the effect on the price of j is given by Aij. Equation 1 simply
states that if increasing demand for i lowers prices by more than α (the average market size elasticity), i is
subsidized. Conversely, it is taxed if the price reduction is less than the average. This correction is needed
because there is an implicit aggregate demand externality in our model where firms make no profit.

The externality is nil when firms’ profit is fully taxed and prices are equal to marginal cost: if an in-
crease in demand reduces prices, it also decreases firms’ profit. Profit is rebated to households, so lower
prices indirectly reduce households’ disposable income. The two effects cancel each other and there is
no externality. In our benchmark economy, lower prices only have a positive impact so the externality
does not cancel. Note that the planner does not use commodity taxation to take advantage of the average
price impact, this will be done through the income tax. Commodity taxes are used to internalize differ-
ential price effects across markets: through substitution effects, consumption is reallocated towards more
responsive markets.31

When profits are fully taxed, prices are simply set to the marginal cost of production. For completeness
we restate this standard result in the following proposition:

Proposition 2. Consider an economy where profits are fully taxed. We denote by χ(Q1, ..., Qn) the total cost of
production. At the optimal allocation, consumer prices satisfy: qi = ∂Qi χ(C1, ..., Cn).

In our benchmark economy with no profit, our optimal commodity tax result can also be expressed in
terms of total cost. Since there is no profit, there is an implicit fixed cost of production. In equilibrium,
firms’ revenue equals their total cost (variable plus fixed). We have that pi = φi(Q1, ..., Qn) and −Qj/
pi∂Qj φi = Aij, so the partial derivative of the total cost (which is equal to total revenue piCi in equilibrium)
with respect to Qi is given by pi−∑ Aji pjCj/Ci. Proposition 1 therefore simply states that consumer prices
should be proportional to "total marginal costs", where the notion of total costs incorporates the utilization
of the fixed factor.32

negative, the government would have to raise funds to finance the subsidy (or rebate the revenue optimally if it was positive)
and there would be a non trivial interaction between redistribution and corrective commodity taxation. Imposing zero revenue
on average cleanly separates the redistributive and corrective motives.

31The entry model in Online Appendix A3 provides a concrete example. In that simple model, when markets are larger,
more firms enter and mark-up decreases. The effect of market size on mark-ups is not reflected in producer prices. Thanks to
commodity taxes, consumer prices capture the marginal effect on mark-ups so consumption is redirected towards markets where
mark-ups are more responsive to aggregate demand.

32For example, in an entry model, the fixed factor would be given by the number of firms times the cost of entry.
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3.2 Optimal Income Tax

We now turn to the optimal income tax. We denote by λ the Lagrange multiplier on the government
budget constraint. To characterize the schedule we consider the standard perturbation of Saez (2001):
a small change of marginal tax dτ in a neighborhood dz of z and a change in tax dzdτ above. We have
four effects to consider: the mechanical change in revenue, the welfare effect of the tax change, the fiscal
externality of the labor supply responses and the fiscal externality of shifts in aggregate consumption and
producer price adjustments.

Mechanical and Welfare Effects. This effect is standard: every households above z pays an additional dzdτ

in taxes. Their welfare loss is vz∗dzdτ which is valued G′vz∗dzdτ/λ by the planner. The total effect is:

Ez′>z
(
1− G′vz∗/λ

)
dzdτ

Labor Supply Effects. This is again standard. The change in tax rate at z generates a compensated wage
effect on labor supply and the change in tax above z creates an income effect. The change in government
revenue is then given by:

− f (z)
T′

1− T′
zζ̃dzdτ −Ez′>z

(
T′

1− T′
η̃

)
dzdτ

Price and Demand Effects. The small change in the tax schedule affects households’ disposable income both
mechanically and through labor supply responses. This shifts aggregate demand for goods and producer
prices are adjusted. The impact on government revenue, through the receipts of the commodity taxes is
given by:

∑(qi − pi)dCi −∑ dpiCi

The price adjustment is dpi/pi = −∑ AijdCj/Cj so we can rewrite the equation as:

∑
i

(
qi − pi

(
1−∑

j
Aji

pjCj

piCi

))
dCi = ∑ αqidCi

The equality uses our result on the optimal commodity taxes. This can be further simplified: using the
budget constraint of households, we have that ∑ qidci is exactly the change in disposable income. The
impact on government revenue is then given by:

−α
(

f (z)zζ̃ + Ez′>z (1 + η̃)
)

dzdτ

Since commodity taxes optimally distributes consumption across markets, when they are in place it is as
if there was a unique market where the market size elasticity of price is the average elasticity α.

Summing these four effects gives the first order conditions for the optimal tax rate. We denote by g the
pareto weights g = G′vz∗/((1− α)λ), where the 1− α normalization is such that E(g) = 1 when there are
no income effects.

Proposition 3. When firm makes no profit in an economy where the average market size elasticity is α, the optimal
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non linear income schedule is characterized by:

T′

1− T′
= −α +

1− α

zζ̃ f (z)

{
Ez′>z (1− g)− 1

1− α
Ez′>z

((
α +

T′

1− T′

)
η̃

)}
When income effects are negligible, the optimal schedule satisfies:

T′

1− T′
= −α +

1− α

zζ̃ f (z)
Ez′>z (1− g)

When profits are fully taxed, the optimal schedule is:

T′

1− T′
=

1
zζ̃ f (z)

{
Ez′>z (1− g)−Ez′>z

(
T′

1− T′
η̃

)}
When the average market size elasticity is positive (α > 0), labor supply is subsidized and tax rates are

lower.33 Intuitively, lower tax rates incentivize work, so aggregate income is higher and households con-
sume more which reduces prices. Note that if the endogenous quantities (the pareto weights, the income
distribution and the labor supply elasticities) remain constant as α varies, then the formula tells us that the
tax rate at α > 0 is such that 1− T′ = (1− T′)α=0/(1− α). In that case, the planner implements a uniform
wage subsidy 1/(1− α) on top of the standard non linear tax. There would be no interaction between
the corrective tax (the wage subsidy) and the redistributive motive. In fact, prices and all endogenous
quantities are likely to vary as α changes, which we characterize in the remainder of the paper.34

These observations highlight an important limitation of the standard optimal tax formula: the effect
of prices is completely implicit, so it provides little insight on how they affect optimal redistribution. In
particular, when profits are fully taxed, the first order conditions are exactly the same whether prices are
fixed or not. In the next section, we provide a thorough characterization of the role of prices using a
comparative static approach addressing these limitations.

Optimal Taxation without Commodity Taxes. Up to now, we have assumed that commodity taxes were
very flexible, such that the government could tax differently every good in the economy. This might be
an implausible assumption. Here, we briefly discuss how the optimal tax rate is modified when this is
not the case. To simplify, we consider the extreme opposite case: the planner cannot set different taxes on
different goods, i.e. there are no commodity taxes. Suppose, for clarity, that there are no income effects
and that the matrix A is diagonal. The optimal tax rate then satisfies:

T′

1− T′
= −α̃ +

1− α̃

zζ̃ f (z)
Ez′>z (1− g)−∑

j
(α̃j − α̃)

(
∂z∗ej +

1
zζ̃ f (z)

Ez′>z
(
∂z∗ej

))
︸ ︷︷ ︸

Reallocation across markets

33Note that this correction could be done through consumer prices using uniform commodity taxes. Indeed, an homogeneous
reduction in prices is equivalent to a wage subsidy, so the optimal income tax could be given by the formula of Proposition 3
with α = 0 if all consumer prices are multiplied by 1− α.

34Rothschild and Scheuer (2014) and Kushnir and Zubrickas (2020) also considered aggregate externalities from returns to
scale, and showed that it leads to a proportional adjustment to the entire income tax schedule. Relative to these papers, our
contribution is threefold. First, we characterize the role of non-homotheticities and endogenous prices in Section 4. Second, we
are the first to show that the response of the optimal tax schedule is non-trivial if the social welfare function is concave, even
when preferences are homothetic: higher-income households will contribute more to the financing of the subsidy (see Section
4.4 for the theoretical characterization and Section 5.3.1 for the quantification). Third, we quantify the impact on the optimal tax
schedule using a model matching causal estimates of increasing returns to scale (see Section 5).
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The optimal tax is the sum of two terms. The first term is the same as in our analysis with commodity
taxes. It captures the standard redistributive motive and the uniform wage subsidy 1/(1− α̃), with α̃ the
average reduction in prices when agents’ income increases.35 Without commodity taxes, however, the
allocation of consumption across markets is inefficient: there is too much consumption of low αi products.
The second term precisely expresses how the planner utilizes the income tax to reallocate consumption
more efficiently.

Let us describe this reallocation term. First, α̃i is the average response of prices when the market for
i expands, taking into account the equilibrium response of demand.36 It takes a simple form when the
elasticity of substitution is constant (denoted here by σ):

α̃i =
αi

1− σαi
/
(

∑
sj

1− σαj

)
where sj = pjCj/ ∑ pjCj is the share of j. Since α̃i increases with αi, reallocating consumption from low
to high αi markets lowers prices on average and improves efficiency. Second, increasing the tax rate at z
decreases demand for i by ∂z∗ei + 1/zζ̃ f (z)Ez′>z(∂z∗ei). Therefore, the reallocation term lowers the income
tax at z if households above z spend more on high αi goods than the average household. To see this more
clearly, note that we can rewrite the reallocation term as:

∑
j
(α̃j − α̃)

(
∂z∗ej − ∂z∗Ej +

1
zζ̃ f (z)

Ez′>z
(
∂z∗ej − ∂z∗Ej

))
.

When preferences are non-homothetic, the planner uses the income tax to address the lack of commodity
taxes. Redistributing income to high αi consumers, indirectly reallocates consumption from low to high αi

markets. With homothetic preferences, by contrast, the reallocation term is nil since redistributing income
no longer affects the relative market sizes.

Finally, note that when the αi are equal to α across markets, we have α̃i = α̃ = α and we recover the
income tax of Proposition 3. Indeed, commodity taxes are superfluous in this case.

4 Understanding the Impact of Prices and Non-homotheticities

In this section, we use a comparative statics approach to understand the mechanisms through which
optimal tax rates respond to prices, market size effects and shifts in the income distribution in the presence
of non-homotheticities.37 To streamline the analysis, we make several simplifying assumptions. First, we
impose an additively separable utility function, assume that the wage elasticity of labor supply is constant
and that there are no income effects at initial prices. These assumptions are common in the optimal
taxation literature and provide a useful benchmark, but can easily be relaxed.38 Second, we assume that
the matrix of market size elasticity is constant. This is a practical assumption: our goal is to bring the
formula we derive to the data, and existing evidence suggests that a constant elasticity provides a good

35We have α̃ = [s1 .. sn]′(Id + ∆αS)−1[α1∂z∗E1/s1 .. αn∂z∗En/sn], or in terms of the α̃i defined below, α̃ = ∑ α̃i∂z∗Ei. α̃ plays the
same role here as in our previous analysis, as it quantifies the benefits of increasing agents’ income.

36We have α̃i = [s1 .. sj .. sn]′(Id + ∆αS)−1[0 .. αi/si .. 0] where sj the share of j. As the market for i expands, the price of i
decreases by αi/si. As price changes are compensated (with the income tax), this generates shifts in demand for all goods though
substitution effects. Each round, prices adjust by ∆αS [0 .. αi/si .. 0] so the equilibrium change in prices is (Id + ∆αS)−1[0 .. αi/
si .. 0].

37Online Appendix A2 reports the proofs for this section.
38In Online Appendix A3, we show that the results of this section hold when the elasticity of labor supply is not constant (see

Proposition A5).
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fit to the data.39 Finally, in the first subsections below we assume that the social welfare function is linear
(i.e., G(v(θ)) = λθv(θ)); we show how to relax this assumption in Online Appendix A3.40

4.1 Response to a Price Change in Partial Equilibrium

We first focus on the response of the optimal income tax schedule to an exogenous increase in the price of
good i, qi. We consider here the partial equilibrium response: we omit the general equilibrium adjustment
of prices that results from shifts in aggregate demand for goods. This is useful for two reasons. First, it
provides the full response of the tax schedule in the standard case where production functions are linear
(i.e. A = 0). In this case, price changes are fully exogenous, as producer prices are inelastic to shifts
in demand. Second, it is a stepping stone to characterize the general equilibrium responses, which will
depend on the partial equilibrium response and on the endogenous change in consumer prices due to
the reallocation of demand, which we analyse in Section 4.2. We start by deriving the response of the tax
rate faced by an agent with ability θ, which should be interpreted as the change in tax rate at the F(z(θ))
percentile of the income distribution.

Proposition 4. The response of the optimal tax rate at θ to a marginal increase in the price of good i is given by:

qi∂

∂qi

{
T′

1− T′

}
=

1− α

zζ̃ f (z(θ))
E

g
z>z(θ)

(
∂z∗ei −Eg (∂z∗ei)

)
︸ ︷︷ ︸

value of redistribution

+
1

zζ̃ f (z(θ))
Ez>z(θ)

((
T′

1− T′
+ α

)
zζ̃(1− T′)∂z∗z∗ei −E

((
T′

1− T′
+ α

)
zζ̃(1− T′)∂z∗z∗ei

))
︸ ︷︷ ︸

income effects

− 1
1− α

(
T′

1− T′
+ α

)
E

((
T′

1− T′
+ α

)
zζ̃(1− T′)∂z∗z∗ei

)
︸ ︷︷ ︸

value of public funds

.

With ∂z∗ei the marginal propensity to spend on good i and Eg(X) = E(gX) the average welfare value of a variable
X.

The derivative of the tax rate with respect to consumer prices is the sum of three terms, which corre-
sponds to three channels of the impact of prices on redistribution. First, an increase in prices affects the
value of redistribution. At the initial prices, the social value of a dollar transfer to an agent with income z
is given by the pareto weight g(z). With this additional dollar, the agent spends ∂z∗ei on good i. When the
price of i increases, the purchasing power of the agent is therefore reduced at the margin by ∂z∗ei. Since an
agent at z can buy less with a an additional dollar, the value of a dollar transfer is reduced by g∂z∗ei, and
taxes are increased.41

39Section 5 provides a review of available estimates.
40The comparative statics approach we use in this section allows us to provide an explicit characterization of the impact of

non-homotheticities and market size effects on optimal taxation, in terms of observable statistics. With non-homotheticities,
it is not possible to obtain an explicit solution of the integral equation characterizing the optimal tax schedule in partial or
general equilibrium. First, non homothetic demand systems do not yield closed form expressions for both demand functions
and marginal utility of income – with some exceptions e.g. Stone-Geary preferences, which are too limited to capture the impact
of price changes observed in the data. Second, in general, the Pareto weights will depend on agents’ disposable income and thus
on on the income tax T(z). With homothetic utility, quasilinear preferences in consumption, and a linear social welfare function,
a closed form solution can be obtained in some cases (e.g., Eeckhout et al. (2021)).

41An equivalent way to understand the impact of prices on the value of redistribution is to note that ∂z∗ ei corresponds to the
shift in the marginal price index of the agent. The social value of a dollar transfer to an agent is reduced by the increase in the
price index of the agent since it determines how the agent’s utility increases with this additional dollar.
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The change in a household’s price index is not enough, in isolation, to understand how redistribution
is impacted by prices. What matters is the change in the individual price index relative to the average
change in price indices. Increasing qi reduces the purchasing power of all agents but this reduction is not
necessarily uniform when preferences are non-homothetic. The planner decreases the tax rate at θ – to re-
distribute more to agent with income z(θ′) > z(θ) – if and only if a dollar transfer above θ buys relatively
more welfare than below θ, that is if the price index increases relatively less above than below. In terms of
spending patterns, this means that if the marginal propensity to spend on good i increases with income (or
equivalently that spending on good i is convex), then the tax rate will be raised everywhere in response
to an increase in qi. The converse is true when the marginal propensity decreases. When preferences are
homothetic, there is no effect on the tax rate since the change in price index is uniform along the income
distribution.

The second and third channel through which the tax rate is impacted by price changes are tied to la-
bor supply. An increase in the price of good i generates an income effect on labor supply. The change
in income effect is given in our formula by −zζ̃(1− T′)∂z∗z∗ei. To understand this term, suppose that the
marginal propensity to spend on good i decreases (so ∂z∗z∗ei < 0). An increase in the price of i implies
that the agents’ price index increases relatively less at higher income. Therefore, after the price change, the
(marginal) purchasing power of the agent increases with income: a dollar transfer to an agent makes work
more valuable – since she now has a higher real wage – and stimulates labor supply through an income
effect. Formally, when ∂z∗ei decreases (increases), an increase in qi convexifies (concavifies) the indirect
utility of consumption and therefore generates a positive (negative) income effect. When the income effect
is positive, it increases the cost of taxation at θ: raising the tax rate at θ lowers the income of all agents
with θ′ > θ, and reduces their labor supply. Through this mechanism, the tax rate should be lowered at
θ.42 As above, this channel is inoperative when preferences are homothetic, with ∂z∗z∗ei = 0.

Since price changes generate income effects, they also impact the value of public fund – the social
value of a lump sum transfer to all taxpayers.43 The price change increases or decreases the marginal
value of public fund depending on whether the income effects are on average positive or negative. When
income effects are positive (that is, when qi increases and the marginal propensity to spend on good i is
decreasing), the value of a lump sum payment increases. Indeed, without income effects, a lump-sum
transfer to all agents costs exactly one dollar of public fund, as it induces no behavioral response. Positive
income effects reduce the cost of a lump sum payment: a higher lump-sum payment increases agents’
disposable income, they work more which generates a positive fiscal externality. So when income effects
increase with the price change, public funds become more valuable. Higher tax rates therefore become
more valuable as they generate more revenue, which is then transferred with a lump sum to all agents.

This first characterization of the effect of prices on the tax rate has the advantage of making explicit
the mechanisms through which prices affect redistribution. The impact of prices on the tax rate can be
decomposed through three channels: the direct effect of prices on the social value of income, their effect
on labor supply, and their effect on the value of public fund. A limitation is that these effects appear
difficult to sign without making assumptions on the monotonicity of ∂z∗z∗ei. In the following proposition,
we rearrange the formula44 and derive unequivocal results on the optimal response of the tax schedule,
requiring only an assumption on the sign (rather than the monotonicity) of ∂z∗z∗ei.

42The response of redistribution depends on whether the income effect induced by the price change is higher above or below
θ. The expression given in Proposition 4 makes it difficult to sign the overall effect. We will provide a complete characterization
in Proposition 5. For now, one can note that, as (T′/(1− T′) + α)zζ̃(1− T′) likely increases (this term represents the per capita
cost of a change in the tax rate proportional to 1− T′ at θ), the overall effect will be to lower taxes when qi increases and the
marginal propensity to spend on good i decreases.

43Formally, this is defined as the lagrange multiplier on the government budget constraint λ.
44For the simplification, we use the optimality of the initial tax schedule, as discussed in the proof in Online Appendix A2.
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Proposition 5. The response of the optimal tax rate at θ to a marginal increase in the price of good i can be
reexpressed as (recall that ∂z∗Ei = E(∂z∗ei)):

qi∂

∂qi

{
T′

1− T′

}
=

1− α

zζ̃ f (z(θ))
Ez>z(θ) (∂z∗ei − ∂z∗Ei)−

(
T′

1− T′
+ α

)
(∂z∗ei − ∂z∗Ei)

When the marginal propensity to spend on i is decreasing (∂z∗z∗ei < 0), we have:

qi∂

∂qi

{
T′

1− T′

}
< 0 ∀θ

When the marginal propensity to spend on i is increasing (∂z∗z∗ei > 0), we have:

qi∂

∂qi

{
T′

1− T′

}
> 0 ∀θ

Moreover, if ∂z∗z∗ei < 0 (∂z∗z∗ei > 0), then zζ̃qi∂qi {T′/(1− T′)} f is decreasing (increasing) at the bottom of the
distribution and increasing (decreasing) for θ ≥ θi, with θi such that ∂z∗ei[θi] = ∂z∗Ei.

The advantage of this new characterization is twofold. First, it allows us to quantify the effect of prices
on the tax rate as a function of observable quantities. For example, we do not need to specify pareto weights
to evaluate the impact of prices. Second, we can unequivocally sign the impact of prices on taxes.

When the marginal propensity to spend on good i decreases (i.e, i is a "necessity” good), the tax rate
decreases everywhere in response to an increase in qi. The tax burden decreases at the top of the distribu-
tion and increases at the bottom: the planner redistributes to higher-income households. This result might
seem surprising, because the optimal tax schedule amplifies the redistributive effects of price changes in-
stead of offsetting them, but Proposition 4 explains why. When i is a necessity good, the social value of
a dollar transfer decreases less for higher-income than lower-income households, and the income effects
increase more at the top.

Note that Proposition 5 defines a partial ordering over consumer goods. If the marginal propensity to
spend on good i increases faster than the marginal propensity to spend on j,45 an increase in the price of i
leads to more redistribution than an increase in the price of j: qi∂qi T

′ > qj∂qj T
′. The last item in Proposi-

tion 5 shows that the change in the value of redistribution is decreasing at the bottom of the distribution
and increasing in the upper half: even if there is a large fall in the marginal tax rate in the middle of the
distribution, the goal is to redistribute income to higher-income households.

While social preferences do not appear in our formulas, they still play a crucial role. Note that the
derivative of the tax rate ∂qi T

′ is of order (1− T′)2. The stronger the preference for redistribution, the
higher the (initial) tax rate, and the lower the sensitivity of the tax rate to changes in prices. This result is
not specific to prices. For any exogenous changes (be it a change in the skill distribution, in the elasticity
of labor supply or in tastes for redistribution), the optimal tax rate will be less sensitive to these changes if
it is initially set at a high level. To illustrate, assume that the marginal propensity to spend on i is constant
above θ0. Then an increase in qi does not generate any income effect on labor supply above θ0 and only
impacts the tax rate through changes in the value of redistribution. Denoting ḡ(θ) = E(g | θ′ > θ) the
average Pareto weight for households with ability larger than θ, we have:

qi∂

∂qi

{
T′

1− T′

}
=

ḡ(θ)
1− ḡ(θ)

(
T′

1− T′
+ α

)
(∂z∗ei − ∂z∗Ei)

45That is, ∂z∗ ei − ∂z∗ ej is increasing.
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If ∂z∗ei is larger than average above θ0, then an increase in qi reduces the value of a transfer to high income
households and tax rates are set higher at the top of the distribution. Note, however, that if ḡ(θ) is small
then the increase in tax rates is small. Intuitively, if the planner does not value the welfare of higher
ability households, price changes have no effects on top tax rates if they do not change the cost of taxation
through labor supply.

The formulas of Proposition 5 can be adapted when social preferences are Rawlsian. In that case, we
have:

qi∂

∂qi

{
T′

1− T′

}
=

(
T′

1− T′
+ α

) (
E
(
∂z∗ei | z′ > z(θ)

)
− ∂z∗ei

)
Even in the extreme case were the social planner only values the welfare of the poorest agent, an increase
in the price of necessities leads to more redistribution towards higher income households. This is entirely
due to the impact of the price change on labor supply. An increase in the price of necessities generates a
positive income effect on labor supply and decreases the income tax. The inverse is true for luxuries.

4.2 Response to a Price Change in General Equilibrium

We now turn to the general equilibrium response, which we characterize in three steps. We first character-
ize how aggregate demand for goods responds to consumer price changes, taking into account the partial
equilibrium response of taxes derived in the previous section. We then derive the response of the optimal
tax schedule. Finally, we provide simple examples illustrating the economic forces at play.

4.2.1 Characterizing the Aggregate Demand Response

We now characterize the response of aggregate demand to a price change, including the partial equilib-
rium response of taxes, and provide a decomposition into income and substitution effects. We show that
the income effect can be further decomposed into an aggregate income channel and a reallocation channel.
These intermediate steps are necessary to understand the general equilibrium response of the tax sched-
ule, since changes in aggregate demand induce further price changes, which themselves induce further
changes in optimal tax rates and more changes in aggregate demand.

Proposition 6. The elasticity Cji of aggregate demand for good j, Cj, to an increase in price qi, accounting for the
(partial equilibrium) response of optimal taxes and keeping all other consumer prices qj fixed, is:

Cji = −
1

(1− α)Ej
E
(

zζ
(

∂z∗Ej + qjτ
nh
j

) (
∂z∗Ei + qiτ

nh
i

))
︸ ︷︷ ︸

Income Effect

+
qi

Cj

∂Ch
j

∂qi︸ ︷︷ ︸
Substitution Effect

where ∂Ch
j /∂qi = E(∂ch

j /∂qi) is the cross-price derivative of Hicksian demand and τnh
i captures the impact of

non-homothecities on the sensitivity of aggregate demand to prices with:

qiτ
nh
i ≡ (1− α)(1− T′)

(
1

zζ̃ f (z)
Ez′>z (∂z∗ei −E (∂z∗ei)) + ∂z∗ei −E (∂z∗ei)

)
.

Under mild technical assumptions,46 τnh
i is everywhere positive when i is a luxury good, negative when i is a

necessity and nil when the marginal propensity to spend on i is constant.

46For example, z(θ) = 0 and ζ̃ f
(

1 + zζ̃ ′

ζ̃
+

z f ′
f

)
< 1, which is verified in the data with a large margin.
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Proposition 6 decomposes the derivative of aggregate consumption with respect to prices into an in-
come effect and a substitution effect. The substitution effect is standard: it is the aggregation of the in-
dividual substitution effects, given by the price derivatives of Hicksian demand. The income effect term
captures both the direct effect of prices on income and their indirect effect through the income tax adjust-
ments of Proposition 5. It operates through an aggregate income channel (captured by ∂z∗Ej) and, when
preferences are non homothetic, through a reallocation channel (captured by τnh

j ).
To spell out the economic forces at play and provide a heuristic proof for Proposition 6, consider the

impact of a small increase in the marginal tax rate at θ, dτ, on spending on good j, Ej:

dEj = −
zζ

1− α

(
∂z∗Ej + qjτ

nh
j

)
dτ (1)

When preferences are homothetic (τnh
j = 0), an increase in tax rates decreases aggregate demand for good

j by the average marginal propensity to spend j times the reduction in total income.47 This is the aggre-
gate income channel. When good j is a luxury, the fall in aggregate demand is amplified since the tax
increase redistributes income to poorer households, who have a smaller marginal propensity to spend on
j. This reallocation channel is captured by τnh

i > 0. Inversely, when i is a necessity, the non homotheticities
dampen the sensitivity of consumption to taxes, with τnh

i < 0.
These aggregate income and reallocation channels also characterize the income effects of prices (and

the induced tax change) on consumption. Indeed, as explained in Section 3, a price change dqi gener-
ates the same income effects as a change in taxes dT(z) = ei(z∗, q)dqi/qi.48 In addition, marginal tax
rates are optimally adjusted by ∂qi T

′. Thus, agents’ reaction to the price change is equivalent to their re-
action to a shift in tax rates given by ∂z∗ei + qi∂qi T

′/(1− T′). Direct algebra shows that ∂z∗ei + qi∂qi T
′/

(1− T′) = ∂z∗Ei + qiτ
nh
i , so plugging dτ = ∂z∗Ei + qiτ

nh
i in equation 1 gives the formula of Proposition 6.

Using Proposition 6, we can assess the sign of the aggregate demand response to various price shocks.
The response of aggregate demand for j to an increase in its own price qj is always negative. Furthermore,
the income effect generated by an increase in the price of a luxury is negative for all luxuries. Indeed,
a price increase for a luxury generates a negative income effect and induces a tax increase, as shown in
Proposition 5. As a result, there is a fall in both richer households’ income and aggregate income, which
unambiguously decreases demand for luxury goods: the aggregate income channel and the reallocation
channel both decrease the consumption of luxuries.

Turning to the response of the consumption of necessities, the impact of a luxury price increase is
ambiguous. On the one hand, aggregate real income decreases: as prices and taxes increase, real labor
income decreases and the aggregate income channel lowers the consumption of all goods. On the other
hand, higher tax rates reallocate income to poorer households, which generates a shift of aggregate con-
sumption from luxuries to necessities. The impact on aggregate demand for necessities depends on which
effect – lower aggregate income or reallocation – dominates. Formally, the sign of ∂z∗Ej + qjτ

nh
j – which

governs the sensitivity of aggregate demand to price changes – is ambiguous for necessities.49

While the aggregate response of consumption to prices can be ambiguous, we find that the response of
aggregate expenditure shares to price changes is unambiguous under mild conditions. Specifically, under
the assumption that ∂z∗Ej − sj (with sj the expenditure share of j) is positive for luxuries and negative for
necessities, the aggregate income channel and the reallocation channel work in the same direction for both
the share of luxuries and necessities. Note that this assumption simply states that the aggregate share of

47Which is here given by zζ/(1− α).
48Or equivalently, an increase in marginal tax rates dT′ = (1− T′)∂z∗ eidqi/qi.
49Similarly, the impact of an increase in the price of necessities is ambiguous, as it leads to lower tax rates.
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luxuries increases when aggregate income increases.50

Let us first consider the case of homogeneous inflation for all consumer prices: dqi/qi = 1 for all i. In
this case, we have ∑ ∂qi T

′dqi = 0. As all households are equally affected by the price change, there is no
need to change the tax schedule. To streamline notations, we denote by Ez(·) the income weighted mean
of a variable.51 The change in the aggregate share of j, sj = qjCj/ ∑ qiCi is given by:

dsj

dq
= − ζ

1− α

(
∂z∗Ej − sj + Ez( qjτ

nh
j )
)

.

When preferences are homothetic, dsj/dq = 0: since a homogeneous price shock is equivalent to a wage
reduction, the demand for all goods simply decreases by ζ/(1− α) percent, which is the decline in real
income. When preferences are non homothetic, this effect also operates, but as households become poorer,
they reallocate their income away from luxuries and towards necessities: dsj/dq is negative for luxuries,
positive for necessities.52

Next, we consider an increase in the relative price of i: dqi/qi = 1− si and dqj/qj = −si. This price
change partials out the effect of homogeneous inflation, as the price of the average consumption basket is
kept constant. The change in the aggregate share of j, is given by:

dsj

dq
= sj

qi∂Ch
j

Cj∂qi︸ ︷︷ ︸
Substitution Effect

− ζ

1− α
Ez

((
∂z∗Ej − sj + qjτ

nh
j

) (
∂z∗Ei − si + qiτ

nh
i

))
︸ ︷︷ ︸

Income Effect

When preferences are homothetic the income effect is zero and the share of j reacts to prices only through
a substitution channel. With a constant elasticity of substitution σ, for example, the share of all j 6= i
increases proportionally to siσ.

When preferences are non homothetic, the income effect is non trivial. If the price of a necessity
increases, the income effect is negative for all necessities and positive for all luxuries.53 Indeed, an increase
in the price of necessities relative to luxuries has a negative income effect on lower income households,
as necessities constitute a larger portion of their consumption basket. Lower income households have a
higher propensity to spend on necessities, so the aggregate share of necessities decreases through income
effects. With a constant elasticity of substitution, the share of any luxury good increases proportionally
more than the share of any necessity good in response to an increase in the price of a necessity: income
is reallocated away from necessities. In addition, the change in taxes is qi∂qi T

′ < 0, which amplifies this
reallocation of income away from necessities. The impact of the tax adjustment on the share of j is given
by:

− ζ

1− α
Ez

((
∂z∗Ej − sj + qjτ

nh
j

) qi∂qi T
′

1− T′

)
,

which is negative when both i and j are necessities and positive if j is instead a luxury. Intuitively, in
response to an increase in the relative prices of necessities, tax rates decrease as shown in Proposition
5. Since income is redistributed to higher income households, this accentuates the overall reallocation

50That is, when the income of every agent is increased by one dollar.
51More precisely Ez(X) = E(zX)/E(z).
52Indeed, τnh

j is positive for luxuries, and negative for necessities. Note that instead of making an assumption on the sign of
∂z∗Ej − sj, we could directly assume that the individual share of a luxury product i, ei(z∗)/z∗ increases with z∗. To see this, note
that ∂z∗Ej − sj +Ez( qjτ

nh
j ) = Ez(∂z∗ ei − ei/z + qi∂qi T

′/(1− T′)) which is positive for luxuries with increasing individual shares
and negative for necessities with decreasing individual shares.

53The opposite is true if the price of a luxury increases.
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towards luxuries.
To summarize, in this subsection we have found that, for a homogeneous price increase, there is no

tax adjustment and the aggregate share of necessities increases through standard income effects. For
relative price increases, the change in taxes amplifies reallocation towards necessities when the price of
luxuries increases and towards luxuries when the price of necessities increases. Consequently, if price
elasticities with respect to market size are positive, when the inflation rate of necessities is larger the
optimal tax adjustment leads to a larger divergence of the relative prices of necessities, and therefore to
stronger redistribution towards higher income households in general equilibrium (compared with the
partial equilibrium response from section 4.1).

4.2.2 Optimal Tax Response to Exogenous Price Changes in General Equilibrium

Having characterized the effect of prices on the demand side of the economy, both in terms of labor
supply and consumption, we can now derive the general equilibrium response of the optimal income tax
to exogenous producer price changes. For example, these price changes can be interpreted as technology
shocks that shift the cost of production. To simplify the exposition, we consider here the case where
the price of i only depends on the demand for i. Without spillovers, optimal commodity taxes are left
unchanged up to a scaling constant: if qi = (1− τi)pi, then (1− τi)/(1− τj) = (1− αi)/(1− αj) at all
prices. The general case with spillovers and varying price elasticities is reported in Online Appendix A2.

Proposition 7. Consider an economy without spillovers (pi = φi(Ci)). The response of the optimal tax rate to an
exogenous increase in the producer price of i, denoted dp∗i , is:

dT′

dp∗i
=

1− αi

1− α

∂T′

∂qi︸ ︷︷ ︸
Mechanical Price Effect

+ ∑
j

∂T′

∂qj

dqe
j

dp∗i︸ ︷︷ ︸
Endogenous Price Effect

− 1− T′

(1− α)

dα

dp∗i︸ ︷︷ ︸
Endogenous Market Size Effect

where the consumer price response, 1/qjdqj/dp∗i is given by:[
1
qj

dqj

dp∗i

]
= (Id + ∆αC)−1

[
αj

1− α
E(∂z∗cj)

Ci

Cj
+ 1i=j

1− αi

1− α

1
qi

]
,

where [·] denotes a vector with entry indexed by j.54 The endogenous price change dqe
j /dp∗i is simply defined as

dqe
j /dp∗i = dqj/dp∗i − 1i=j (1− αi)/(1− α). Finally, the endogenous market size effect, dα/dp∗i , is given by

1
1− α

dα

dp∗i
= ∑ sj

(
α

αi
− 1
)(

1
qj

dqj

dp∗i
− 1i=j

αi

1− α

1
qi

)
with si = qiCi/ ∑ qjCj the aggregate share of j.

Proposition 7 shows that the tax response to price changes depends on three channels in general equilib-
rium. First, there is a mechanical price effect. When pi marginally increases, given that the subsidy on i
is 1− τi = (1− αi)/(1− α), the consumer price mechanically increases by 1− τi. This mechanical price
effect lowers (increases) tax rates everywhere when i is a necessity (luxury) good.

54For the derivative of the tax rate to be well defined in general equilibrium, we need the eigenvalues of −∆αC to be less
than one, which is verified in our quantitative analysis. Note that if that were not the case, the equilibrium would not exist even
without the price shocks. Indeed, in that case, arbitrarily subsidizing the consumer price of a subset of goods would generate a
producer price decrease large enough so that the subsidy would pay for itself and infinite quantities of goods could be produced.

21



Second, the tax system responds to endogenous price changes arising from labor supply and aggre-
gate consumption. The endogenous price changes work through two channels. First, since qi is reduced
by (1− τi)/qi percent, the response of consumption is given by the cross-price elasticities matrix C. As
explained in Proposition 6, an increase in the relative price of a luxury (necessity) leads to a reallocation
of income towards necessities (luxuries), while homogeneous inflation leads to a reduction in the shares
of luxuries. This response of aggregate consumption generates a further hike in consumer prices given
by ∆αC, which generates a further reallocation of consumption, and so on. This feedback loop is captured
by the matrix (Id + ∆αC)−1. Second, the increase in the producer price pi induces a mechanical drop in
government revenue proportional to Ci.55 The intercept of the tax schedule is increased and consumption
of each good j is reduced by E(∂z∗cj)/Cj × Ci percent. All consumer prices are then adjusted through the
feedback loop.

Finally, optimal taxes respond to an endogenous market size effect. When the market size elasticities
αi differ across markets, a consumer price increase in more elastic markets lowers the aggregate elasticity
α.56 A higher α calls for a higher wage subsidy and leads to a fall in the tax rate.

Simple Examples in a Two-Good Economy. To illustrate the channels in Proposition 7, we discuss some
examples. Consider a two-good economy with a luxury good h and a necessity good l. The elasticity
of substitution between the two goods is σ. We analyze the case where the price elasticities are constant
across markets (αh = αl = α). As seen in Proposition 1, commodity taxes are optimally set to zero in this
case (qh = ph and ql = pl), we only need to determine the change in the income tax. First note that in a
two-good economy, we have qh∂qh T′ = −ql∂ql T

′. Higher luxury prices and lower necessity prices have the
same impact on taxes. The optimal adjustment of tax rates is therefore entirely determined by the relative
price change of the luxury good. For any producer price change dp∗, we have:

dT′

dp∗
=

qh∂T′

∂qh

(
1
qh

dqh

dp∗
− 1

ql

dql

dp∗

)
When the relative price of luxuries increases, tax rates rise everywhere along the income distribution. The
larger the increase in relative price, the larger the rise in tax rates.

Let us first consider a shock to the relative producer price of h. Formally, dp∗h/ph = (1− sh), dp∗l /
pl = −sh.57 In equilibrium, the relative consumer price of h is:

1
qh

dqh

dp∗
− 1

ql

dql

dp∗
=

Amplification
through Substitution︷ ︸︸ ︷

1
1− ασ

×

Amplification
through Income Effects︷ ︸︸ ︷

1

1− αζ
1−α Ω

with Ω =
1

shsl(1− ασ)

(
Ez

(
(∂z∗Eh − sh + qhτnh

h )2
)
+

αζ
1−α

1− αζ
1−α

Ez(∂z∗Eh − sh + qhτnh
h )2

)

The increase in the relative price of h is amplified through two channels in general equilibrium. First,
as the relative price of h increases, agents substitute the necessity good for the luxury good. The market
for l expands relatively to h so the relative price of h further increases which creates more substitution.

55A simple way to see this is that, at fixed consumer prices, an increase in pi mechanically reduces the proceeds of the
commodity taxes.

56Note that an increase in the producer price of i mechanically increases α if αi is larger than average.
57Recall that sh = qhCh/(qhCh + qlCl), and q = p when αh = αl .
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Each round, the relative price of h increases by ασ and the overall amplification is 1/(1− ασ). This is the
only channel of amplification when preferences are homothetic, since the shares of h and l remain constant
as income shifts.

When preferences are non homothetic, as discussed in Proposition 6, the share of h further decreases
through income effects. This amplification is denoted by Ω and operates through two channels. The first
term in Ω, corresponds, as we have seen, to the reduction in the share of h in response to an increase in
the relative price of h. Indeed, when the luxury good becomes more expensive, higher income households
are more affected, since h represents a larger share of their expenditure: their real income loss is larger. As
they also consume more of the good at the margin, the direct impact of the price increase is to reduce the
share of h. In addition, tax rates increase everywhere, as it is more valuable to redistribute to lower income
households. This optimal adjustment of the schedule58 amplifies the reallocation of income towards the
necessity good. As the relative share of h59 decreases, the relative price of h increases when α is positive,
and agents further reallocate their income towards the necessity.

The second term captures the effect of homogeneous inflation on the reduction in the share of h. As the
relative price of h increases, labor supply decreases and aggregate income therefore decreases.60 As aggre-
gate income falls, the market size for both the necessity and the luxury goods decreases, which increases
their prices. This lowers households’ real income and they therefore reallocate their income towards the
necessity good. As we have seen, the reduction in the share of h when inflation is homogeneous is given
by Ez(∂z∗Eh − sh + qhτnh

h ). Again, the reduction in the share of h in response to homogeneous inflation
increases the relative price of h when α is positive. Note that the optimal adjustment in tax rates accentu-
ates both channels. By redistributing income from higher to lower incomes, the planner directly amplifies
reallocation of income towards necessities when the relative price of luxuries increases. By increasing tax
rates, the planner reduces aggregate labor supply which generates more inflation, and, as households be-
come poorer on average, more reallocation towards necessities.

Redistribution towards lower income households is therefore amplified, through general equilibrium
effects, when the relative price of h increases. We have:

dT′

dp∗
=

1

(1− ασ)(1− αζ
1−α Ω)

qh∂T′

∂qh
.

As can be expected, the amplification is stronger when the price elasticity α, the elasticity of substitu-
tion σ, and the labor supply elasticity ζ are larger. Moreover, the amplification is stronger when non-
homothecities are more pronounced, as they accentuate reallocation towards necessities through income
effects in Ω.61

Next, we consider an homogeneous increase in the price of the luxury and necessity: dp∗h/ph = dp∗l /
pl . In partial equilibrium, this price change has no effect on tax rates. As explained in Proposition 7,
this price increase reduces government revenue, which induces a second price change α/(1− α)∂z∗Ej/sj.

58Given by ∂qh T′.
59The coefficient shsl in the formula captures the decrease in the share of h relative to l as dsh/sh − dsl/sl = dsh/(shsl).
60Keeping taxes fixed, an increase in the relative price of h reduces income by ζEz(∂z∗ eh − sh). This is positive if ∂z∗Eh ≥

sh. In addition, the increase in tax rates further reduces labor supply. The total reduction in aggregate income is given by
ζEz(∂z∗Eh − sh + qhτnh

h ).
61More precisely comparing two economies A and B where ∂z∗ eA

h − ∂z∗ eB
h is increasing and A and B are otherwise identical,

then we have ΩA ≥ ΩB and the amplification through income effects is stronger.
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Ignoring this second change, the increase in the relative price of h would be:

1

(1− ασ)
(

1− αζ
1−α Ω

) × αζ
1−α

1− αζ
1−α

Ez(∂z∗Eh − sh + qhτnh
h )

shsl
.

An increase in inflation reduces real income and therefore decreases the share of h. As a result, the relative
price of h increases (through market size effects) and this increase is amplified through the substitution
and income effects described above. Now incorporating the price change resulting from the drop in
government revenue, the total price change is given by:

1
qh

dqh

dp∗
− 1

ql

dql

dp∗
=

1

(1− ασ)
(

1− αζ
1−α Ω

) ×
 α

1− α

∂z∗Eh − sh

shsl
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αζ
(1−α)2

1− αζ
(1−α)

Ez(∂z∗Eh − sh + qhτnh
h )

shsl

 .

The loss in government revenue is paid for through a lump sum tax. As a result, households’ income
decreases and consumption shifts towards necessities. The relative price of the luxury good increases,
which corresponds to the first term in the formula above. In addition, since consumption of both good
decreases, inflation is stronger: both prices increases by 1/(1− α), which explains the second term in the
formula.

Thus, while homogeneous price increases, resulting from a technology shock or an increase in
markups, have no impact on tax rates in partial equilibrium, we find that they lead to more redistribution
in general equilibrium. Households reduce their labor supply and therefore reallocate their income
towards the necessity product, which increases the relative price of the luxury product. It then becomes
optimal to redistribute to lower income households, even though aggregate income decreases overall.

4.3 Price Effects in the Diamond-Mirrlees Model

In this section, we consider the effects of prices on optimal redistribution in a standard model of the
supply side where goods are produced competitively and all profits are taxed, as in Diamond and Mirrlees
(1971b). We find that the mechanisms at play are very similar to those discussed above, which highlights
that the lessons from our analysis are not specific to our benchmark model of the supply side.

Recall that prices are determined by the vector of marginal cost of production mc(Q1, ...Qn), which
potentially depends on the full vector of quantities produced. We denote by A the matrix of marginal costs
elasticity, with Aij = Qj∂Qj mci/pi. As before, A summarizes how prices react to changes in aggregate
demand. The function χ(Q1, ..., Qn) denotes the total cost of production of {Q1, ..., Qn}. To analyze an
exogenous price change for good i, we consider a technological shock that affects the marginal cost of i
and the average cost χ. To stay consistent with our previous notations, the derivatives with respect to this
technology shock are denoted by d · /dp∗i . In particular, the exogenous change in average cost is dχ/dp∗i .

Corollary 1. In an economy with neo-classical production functions, with a full tax on profit, (1) the partial equi-
librium response of the optimal tax rate to an increase in the price of good i are given by the formulas of Proposition
5 by setting α = 0. (2) The general equilibrium response of the optimal tax rate to an increase in the price of good i
is:

dT′

dp∗i
=

∂T′

∂qi
+ ∑

j

∂T′

∂qj

dqe
j

dp∗i
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where ∂T′/∂qi is as in Proposition 5 with α = 0, and the prices dqe
j /dp∗i solve:[

1
qj

dqe
j

dp∗i
+ 1i=j

1
qi

]
= (Id− AC)−1

[
1
qi

dq0
j

dp∗i
+ 1i=j

1
qi

]
,

and dq0
j /dp∗i is the impact of profit redistribution on consumption and prices:

1
qi

dq0
i

dp∗i
= −∑ Aij

E(∂z∗ej)

Cj
dχ/dp∗i

The matrix C is defined as in Proposition 6 with α = 0.

The first part of Corollary 1 shows that the partial equilibrium response of the optimal tax rate in a
Diamond-Mirrlees economy is identical to Proposition 5, setting α = 0. This result is important in itself
as it shows that, beyond the specificities of our supply-side specification, the design of the income tax
cannot be thought through without accounting for price effects. Consumer prices affect redistribution
policies even in the standard Diamond-Mirrlees case, through the channels discussed in Proposition 4.
An increase in the price of luxuries leads to more redistribution towards lower income households and
the opposite is true when necessities become more expensive.

The second part shows that, in the Diamond-Mirrlees economy, the optimal response of taxes to prices
works through the same channels as in our benchmark specification in general equilibrium. There are two
differences with Proposition 7. First, there is no change in the "average market size elasiticity” (our α), so
the optimal tax schedule is no longer affected by this channel. Second, profits are taxed and rebated to
households in a lump sum fashion, hence it is necessary to know the change in profit due to the shift in
average cost −dχ/dp∗i .

Let us revisit our two-good example. Consider an increase in the relative price of h. For consistency,
we assume that A = α Id62 and that the price change induces no change in total cost (dχ/dp∗ = 0). We
then have:

1
qh

dqh

dp∗
− 1

ql

dql

dp∗
=

1
1− ασ

× 1
1− αζ Ω

with Ω =
1

shsl(1− ασ)

(
Ez

(
(∂z∗Eh − sh + qhτnh

h )2
)
+

αζ

1− αζ
Ez(∂z∗Eh − sh + qhτnh

h )2
)

.

The amplification works through the same channels as in the benchmark case. However, the income effect
term depends on αζ rather than αζ/1− α: the amplification through income effects is not as large in the
Diamond-Mirrlees economy when α > 0. Indeed, when demand decreases, prices increase but profits are
also larger. Since profits are rebated to households, this dampens the fall in demand.

4.4 Implications and Extensions

In this section, we briefly discuss some important implications and extensions of our comparative statics
results. The formal results and a longer discussion can be found in Online Appendix A3, due to space
constraints.

Market Size Effects and Redistribution In Proposition A1, we reexamine the impact of market size ef-
fects on optimal tax policies. As prices become more sensitive to market size (e.g., α increases), the planner

62For example, χ(Qh, Ql) = χhQ1+α
h + χl Q

1+α
l .
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implements a larger wage subsidy. As explained in Proposition 3, the subsidy incentivizes labor supply,
aggregate income increases, and all prices decrease. A naive interpretation of Proposition 3 suggests that
this corrective wage subsidy can be implemented independently from redistributive policies: since the
wage subsidy is 1/(1− α), the derivative of the tax rate with respect to α would then simply be given by
dT′/dα = −(1− T′)/(1− α). Our comparative statics results unveil a subtler interaction. A higher wage
subsidy is equivalent to a homogeneous reduction in prices. As seen in section 4.2, this implies that the
share of luxuries increases while the share of necessities decreases. The relative price of luxuries there-
fore decreases. This triggers a readjustment of optimal redistribution policies, with more redistribution
toward higher income households. To see this explicitly, consider the two-good example of section 4.2,
with αh = αl = α (with h the luxury, l the necessity). We find that commodity taxes are optimally set to
zero and that the response of the income tax to an increase in α is:

dT′

dα
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−1− T′

1− α
+
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)
Thus, when prices become more elastic to demand, the tax schedule becomes more regressive not only
because of the corrective wage subsidy but also because of the change in redistribution policies it induces.
When ∂z∗Eh − sh ≥ 0,63 the wage subsidy reduces the relative price of the luxury good. Note that this
reduction is exactly the same as the one generated by an exogenous decrease in all producer prices of
1/(1− α) percent (which corresponds to the increase in the wage subsidy). The price decrease is then
amplified by general equilibrium effects64 and further decreases tax rates according to ∂qh T′, as it becomes
more valuable to redistribute towards higher income households. The interaction between corrective and
redistributive taxation is therefore non trivial and works through prices. When prices instead become
less sensitive to demand, the wage subsidy is lowered, the relative price of the necessity good decreases,
which makes redistribution towards lower income households socially more valuable. A general lesson
is that corrective and redistributive taxation cannot be conducted independently when prices are elastic.

Inequality and Prices. Up to now, we have considered exogenous producer price changes (e.g., stem-
ming from technological shocks affecting the marginal cost of production). Empirically, however, growing
income inequality is a significant source of endogenous price dispersion, through the demand shifts it gen-
erates. In Proposition A2, we analyse how income inequality impacts redistribution policies, both directly
and indirectly through prices. At fixed prices, an increase in income inequality, modelled as an exogenous
shift in the distribution of abilities θ, usually leads to a more redistributive tax schedule. For example, the
top tax rate increases as the upper tail of the income distribution becomes fatter. If we instead observe
a polarization of the income distribution, with relatively fewer middle-income households, marginal tax
rates increase in U-shaped fashion to take advantage of the thinning mass of taxpayers in the middle of
the distribution. These policies, however, do not fully redistribute income: the average income at the top
still increases, so the markets for luxury goods expand, which lowers their equilibrium prices. As the
price of luxuries decreases, it becomes optimal to redistribute towards higher income households. Thus,
we find that higher income inequality leads to less redistributive policies with endogenous prices.

63Or, alternatively, when the share of luxuries eh(z∗)/z∗ increases along the income distribution.
64As before, this amplification is larger when the elasticity of substitution σ, the initial price elasticity α and non-homothecities

are stronger.
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To see this explicitly, consider our two-good example. Assume that the income distribution is Pareto
above θ∗, with a shape parameter 1/ā,65 that the marginal propensity to spend on the luxury h is constant
above θ∗, equal to ∂z∗ ēh, and that the planner does not values the welfare of top income households. We
denote by τ̄ the top tax rate and consider an increase in ā.66 The change in top tax rate at fixed prices is
given by ā/(1− τ̄)∂τ̄/∂ā = (α + (1− α)τ̄). As is well known, top tax rates increase when the upper tail
is fatter. Tax rates are left unchanged below θ∗. With endogenous prices, we find that the change in tax
rates becomes:

ā
1− T′

dT′

dā
= (α + (1− α)τ̄) 1θ>θ∗ +

1
1− T′

qh∂T′

∂qh

(
ā
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dqh

dā
− ā

ql

dql

dā

)
To the extent that the price of the luxury good decreases, tax rates will be everywhere lower than with
fixed prices. Indeed, the price of the luxury good decreases through two channels. First, the additional
income of households above θ∗ is not fully redistributed: as these households spend more on the luxury
good, the market for h expands and its price decreases. Second, as aggregate income increases, aggregate
consumption shifts towards the luxury good. We have already discussed the second effect so we focus
here on the first, which is quantitatively more relevant.67 Denoting s̄z the income share of top households,
we have:
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dā
<

Price change induced by high-income households︷ ︸︸ ︷
− ā
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)
A larger ā directly increases top households’ income by ā/(1− ā) percent. Despite the higher top tax rate,
the income of top households increases.68 The formula shows that the decrease in the relative price of h
will be larger when top households consumes more of h at the margin than the average household (when
∂z∗ ēh − ∂z∗Eh is large), and that the decrease in the price of h can be large compared to the increase in top
tax rate, for example when ā is close to one (the increase in top income can be order of magnitude larger
than the increase in top tax rate) or when ασ is close to one (the amplification through general equilibrium
effects is large). Therefore, the policy response to income inequality cannot a priori neglect price effects.69

Analysis with a Non-Linear Social Welfare Function. In Proposition A3 and A4, we allow the social
welfare function to be non-linear. This implies that the value of a dollar transfer now depends on agents’
disposable income and not solely on their type (this captures, in particular, a decreasing marginal social
value of disposable income). With a concave social welfare function, an increase in tax burden or in prices

65That is, 1− F(z) = C∗z−
1
ā for z > z(θ∗).

66With an adjustment of the scale parameter C∗ such that the mass remains the same above θ∗.
67The change in prices given by change in aggregate income and inflation is similar to the one analysed in section 4.2 and is

negative. It is given by:
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68Proportionally to ζ ā/(1− τ̄)dτ̄/dā ā/(1− ā).
69This is especially true since we find that the sensitivity of the income tax to a change in the distribution of ability and

to prices can be of similar magnitude. For example, in the Rawlsian case, if the distribution of income is Pareto with shape
parameter 1/a, we have a/(1 − T′) ∂T′/∂a = (α + (1− α)T′), while the response of the tax rate to an increase in qh is qh/
(1− T′) ∂T′/∂qh = (α + (1− α)T′) (E(∂z∗ eh | z′ > z)− ∂z∗ eh).
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has a direct "income effect” on Pareto weights, in addition to the valuation effects derived in Proposition
4: increasing the tax burden of an agent directly increases the social value of a transfer to this agent.
This means in particular that when the relative price of a necessity increases, it is no longer optimal to
implement the tax change of Proposition 7. Indeed, decreasing tax rates everywhere increases the tax
burden of lower income households. There is therefore an incentive for the social planner to compensate
lower-income households for their higher burden, and the regressivity of the tax change of Proposition 7
is muted.

However, we find that households are never fully compensated for price changes at the optimum, even
with a concave social welfare function. Intuitively, fully compensating agents for a price change leaves
their disposable income unchanged. This neutralizes the "income effect” of prices on Pareto weights, but
leaves unchanged the valuation effects of prices and their effect on labor supply, derived in Proposition 4.
Consider for example an increase in the relative price of necessities. Fully compensating agents cannot be
optimal, as there is an incentive to redistribute to higher income households (as income effects on labor
supply increase and the value of a social transfer to higher income households increases). A concave social
welfare function therefore mutes the regressivity of the income tax schedule of Proposition 7, but does not
overturn it.

Finally, we also find that, with a non-linear social welfare function, a non trivial interaction between
corrective and redistributive taxation arises even when preferences are homothetic. Indeed, when markets
become more sensitive to price changes, implementing the wage subsidy of Proposition A1 increases the
tax burden of lower income households, which has to be partially compensated through redistributive
policies.

5 Quantitative Analysis

In this section, we examine the quantitative importance of our theoretical results about increasing re-
turns, non-homotheticities and price shocks for the optimal tax schedule. We first present the setting and
main specifications (Section 5.1). We then implement our comparative static approach, studying a general
first-order approximation (Section 5.2). Finally, we make additional parametric assumptions to study the
optimal tax schedule and the feedback loops between redistribution and endogenous prices (Section 5.3).

5.1 Setting

Starting from the model from Section 2, we consider a standard additively separable specification (e.g.,
Saez (2001)):

U(z∗, z, p, θ) = v (z∗, p)− ψ
( z

θ

)
,

where ψ
( z

θ

)
≡ 1

1+ 1
εz

( z
θ

)1+ 1
εz is the isoelastic utility cost of earning z given ability θ, and v (z∗, p) is the

indirect utility function given prices and disposable income. Following the nonparametric evidence of
Kleven and Schultz (2014), we set εz = 0.214; for robustness, we consider εz = 0.33 as in the meta-
analysis of Chetty (2012). We calibrate the skill distribution f (θ) nonparametrically to match the income
distribution at the observed tax schedule, using data from Hendren (2020).

Returns to scale. As in Section 2, returns to scale are governed by the parameter α. There is an emerging
empirical consensus that increasing demand leads to higher productivity and lower prices (in the long
run), and recent papers provide causal estimates for α. Using a shift-share instrument with Nielsen data
in the U.S., Jaravel (2019) finds that when demand increases by one percent, consumer prices for continued
products fall by 0.42 percent. When accounting for changes in product variety, the consumer price index

28



falls by 0.62 percentage points. Leveraging data on durable good industries in the Chinese manufacturing
sector and an IV design based on potential market size, Beerli et al. (2020) estimate that increasing market
size by one percent leads to a TFP increase of 0.46 percent. Using trade shocks as instruments, Bartelme et
al. (2019) estimate sector-level economies of scale and find statistically significant scale elasticities in every
2-digit manufacturing sector, with an average of 0.13.70 Given this range of estimates, we set α = 0.30 in
our baseline specification and study sensitivity.71

For the comparative static analysis in Section 5.1, α can be viewed as the “local” returns to scale. When
studying the optimal tax schedule in Section 5.3, we specify the global relationship between the price pi

of the good produced in sector i and equilibrium quantities in that sector, setting pi = γiQ−α
i ∀i ∈ I .72

Nonhomotheticities. We set the indirect utility function v (z∗, p) to be either homothetic or non-
homothetic in the analysis below to isolate the quantitative impact of non-homotheticities on the optimal
schedule.

A non-homothetic utility function introduces curvature in the agent’s indirect utility from consump-
tion, which affects the social marginal utility of disposable income. Therefore, we normalize the curvature
of utility at fixed prices, so that we mechanically reach the same optimum with homothetic and non-
homothetic utility under constant returns to scale.73 This approach ensures that the comparison between
the homothetic and non-homothetic specifications captures the channel of interest, namely differences
stemming from endogenous prices and their impact on the marginal utility of disposable income across
the skill distribution, rather than assumptions about curvature per se. Our results are thus comparable to
the benchmark models of Mirrlees (1971) and Saez (2001), with no additional curvature and no additional
income effects absent returns to scale, despite the introduction of non-homothetic utility.

For the comparative static analysis, we directly use the formulas derived in Section 4. In partial equi-
libirum, we only need to know the local marginal propensities to consume across goods for agents across
the income distribution, ∂z∗ei. We measure marginal propensities to consume non-parametrically from ex-
penditure shares across 248 product categories. This dataset covers the full consumption basket of Amer-
ican households, linking the CPI price dataset to the consumption patterns of the Consumer Expenditure
Survey (CEX) to the Consumer Price Index (CPI), following Jaravel (2019).

As shown in Proposition 7, the demand elasticity of substitution σ between products plays an impor-
tant role for the feedback loops in general equilibrium. We take estimates from the literature as bounds
for the elasticity of substitution between our product categories. Based on estimates of the elasticity of
substitution between goods and services, two broad categories of consumption which are likely to be
less substitutable than our 248 categories, we set σ = 0.6 as a lower bound (see Comin et al. (2021) and

70Other papers provide empirical evidence for returns to scale in different settings. Acemoglu and Linn (2004) provide em-
pirical evidence that market size influences entry of new drugs and U.S. pharmaceutical innovation. Weiss and Boppart (2013)
show that TFP growth is higher in more income-elastic sectors, using national accounts data covering the entire U.S. economy.
Analyzing Nielsen scanner data across local markets, Handbury (2019) finds that the products and prices offered in markets are
correlated with local income-specific tastes. Focusing on housing and local amenities, Diamond (2016) and Couture et al. (2020)
find that amenities adjust endogenously to an increase in local demand and lower the price index.

71The closest empirical evidence to discipline our model is provided by Jaravel (2019), who looks directly at consumer prices
rather than TFP. For continued products, the estimate for α varies between 0.23 and 0.458, depending on the set of controls, and
α = 0.30 cannot be rejected in any of the specifications. The estimates are larger when product entry is accounted for, hovering
between 0.38 and 0.67 depending on the specification.

72We use the observed equilibrium to calibrate the set of parameters γi, as discussed in Online Appendix B.1.2.
73We work with a “deflated indirect utility function” ṽ(z∗, p), defined such that

ṽ(z∗, p) = v−1(v(z∗, p), pCRS),

where pCRS are the prices prevailing under constant returns (which are normalized to one in the simulations, without loss of
generality). We have ṽ(z∗, pCRS) = z∗,which is identical to the homothetic specification. Online Appendix B.2.2 discusses the
properties of the deflated non-homothetic indirect utility function.
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Cravino and Sotelo (2019)). Given estimates on the substitutability between products within the same
detailed product category, we take σ = 2 as our upper bound (e.g., Broda and Weinstein (2006), Broda
and Weinstein (2010), DellaVigna and Gentzkow (2019), and Handbury (2019) ).

To study the optimal tax schedule beyond the comparative static approach, we need parametric as-
sumptions on the utility function. As further described in Subsection 5.3.2 , we use non-homothetic CES
preferences as in Hanoch (1975), Matsuyama (2019), and Comin et al. (2021).

Social preferences for redistribution. For the comparative static approach in Section 5.2, the formulas
derived in Section 4 show that social preferences for redistribution can be recovered from the initial tax
schedule. Taking the observed tax schedule as optimal obviates the need for specifying the social welfare
function explicitly. For the analysis of the optimal tax schedule in Section 5.3, the planner’s social wel-
fare function, G (U(θ, p)), is assumed to be CRRA, with a relative risk aversion coefficient of one in our
baseline specification and 0.5 for sensitivity.

5.2 Comparative Statics

Using the comparative static approach introduced in Section 4, we first examine the quantitative response
of the tax schedule to exogenous price shocks, and then turn to its response to exogenous shifts in the skill
distribution.

5.2.1 The Response of the Tax Schedule to Exogenous Price Shocks

Starting from the observed tax schedule, we implement the formulas from Section 4 characterizing the
response to a price change. We obtain observed price shocks for the period 2004 to 2015 over 248 product
categories covering the full consumption basket of American households, linking the CPI price dataset
to the consumption patterns of the CEX. Empirically, inflation is lower in product categories with higher
income elasticities: how large is the impact on the optimal tax schedule? To characterize the response of
the tax schedule to these price changes, we first proceed in partial equilibrium (as in Section 4.1) and then
in general equilibrium (as in Section 4.2).

Partial and general equilibrium results. Figure 1 presents the results. We report the changes in the tax
schedule in response to price shocks, depending on the value of σ and contrasting the responses in partial
and general equilibrium.

Using Proposition 5, we obtain the partial equilibrium response, which does not depend on σ. This
response is large, with a fall in marginal tax rates of about 6pp at the bottom of the income distribution;
the marginal tax rates gradually converge back to the observed tax schedule at the top. Because inflation
is lower in the product categories for which higher-skill agents have a higher marginal propensity to
consume, it is optimal for the planner to redistribute toward them, which can be done most efficiently by
reducing marginal tax rates at the bottom of the income distribution.74 Because the fall in the empirical
price index increases with income, it is optimal for redistribution to be increasing in agents’ skills. This
result shows that inflation inequality generates a sizable regressive response of the tax schedule in partial
equilibrium.

Moreover, using Proposition 7, we find that the response of the tax schedule is amplified in general
equilibrium. With σ = 0.6, the planner reduces marginal tax rates by an additional two percentage points
at the bottom of the income distribution. With σ = 2, the amplification is much larger and the optimal
marginal tax rate is reduced to only 10% at the bottom of the income distribution. Indeed, in general

74This mechanism is standard: high marginal tax rates at the bottom are paid by all agents earning higher levels of income,
without distorting their marginal incentives to work, and all revenue is rebated to the lower-income households through the
intercept of the tax schedule.
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equilibrium consumers reallocate their expenditures toward the goods that become relatively cheaper,
which amplifies the price changes through increasing returns and further reduces the relative price of
products with a high income elasticity. These endogenous price changes create an additional motive for
the social planner to redistribute toward higher-skill agents, which leads to further price changes, and so
on. These results show that the general equilibrium response of prices plays a quantitatively important
role for optimal tax policy.

The role of non-linear social preferences. Next, Figure 2 quantifies the role of the curvature of the social
welfare function for the response of the tax schedule, illustrating the theoretical insights from Section 4.4.
While Figure 1 gives the results with linear social welfare weights, we now introduce curvature by taking
the inverse optimum weights at the observed tax schedule as our empirical social welfare function. In
that case, the degree of optimal redistribution toward the rich is slightly muted, because the social value
of redistributing income toward high-skill agents falls endogenously as they get more transfers. With
σ = 0.6, marginal tax rates increase by about 2.5pp at the bottom of the income distribution with the
empirical nonlinear social welfare function, compared with the baseline case with linear Pareto weights.

To further investigate the role of the curvature of the social welfare function, we specify the social wel-
fare function as G(u, θ) = λ(θ) u1−γ

1−γ , with γ the CRRA coefficient and setting λ(θ) such that the observed
tax schedule is optimal. With stronger curvature, e.g. a social welfare function with a CRRA coefficient of
0.5 or 1, redistribution toward the rich falls further. The result that marginal tax rates fall in response to the
price shocks is attenuated but not overturned: the marginal tax rates remain about one to five percentage
points below the observed tax schedule in the first six deciles, and gradually converge to the observed
schedule at higher percentiles.

Likewise, with σ = 2 Figure A1 shows that redistribution toward the rich is reduced the more curved
the social welfare function is. With the empirical social welfare function, the fall in marginal tax rates
remains large, over 10 percentage points at the bottom of the income distribution.

Overall, these results show that non-linearities in social preferences for redistribution may play an
important role for the optimal response of the tax schedule. With the empirical non-linear social welfare
function, the fall in taxes remains substantial for both values of σ.75 In unreported analyses, we find that
the planner continues to increase (rather than decrease) marginal tax rates in response to lower inflation
for high-income households even when the curvature of the social welfare function is much higher, e.g.
with a CRRA coefficient of 10.

The response of the tax schedule to inflation inequality from scanner data. In the Online Appendix, Figure
A2 shows that it is important to measure changes in prices at a detailed level to draw the implications
of price changes for the optimal tax schedule. We repeat the previous exercise using the Nielsen Home-
scan Consumer Panel dataset instead of the CEX-CPI data. The Nielsen dataset covers only fast-moving
consumer goods,76 but it has the advantage of being available at a much higher level of granularity than
the product categories from the CEX-CPI linked dataset and allows for the measurement of changes in
product variety. We use the Nielsen data to illustrate the role of aggregation bias and product variety for
the optimal tax policy response to inflation inequality. Price changes and changes in product variety are
measured from 2004 to 2015 at different levels of aggregation.

Figure A2 shows the implied change in the tax schedule in partial equilibrium, depending on the level
of aggregation used to measure the heterogeneity in consumption baskets, and thus in the inflation rates,
across the income distribution. Because differences in inflation rates across the income distribution arise
primarily within detailed product categories, rather than across, it is important to use granular data to
avoid aggregation bias.

75Online Appendix Figure A1 shows that similar results apply with alternative values for the labor supply elasticity.
76Data coverage in Nielsen represents about 15% of total expenditure and 40% of expenditures on goods.
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To illustrate the magnitude of this effect, we first focus on price indices computed at different levels
of aggregation, using products available across consecutive years, and that do not account for changes
in product variety. With the 994 most detailed product categories, called “product modules”, we find
that it is optimal for marginal tax rates to fall by about 12 percentage points at the bottom of the income
distribution. With 109 larger product categories, called “product groups”, the differences in inflation
across the income distribution are attenuated and, accordingly, the fall in the tax schedule is only about 7.5
percentage points at the bottom of the distribution. With the ten broad “departments”, measured inflation
inequality is much smaller and the fall in tax rates is under 2 percentage points. These differences would
be amplified further in general equilibrium, accounting for endogenous price changes and changes in
demand.

Furthermore, we introduce a correction for changes in product variety, using a CES price index as in
Feenstra (1994) and Broda and Weinstein (2010). In the data, product variety expands faster in product cat-
egories purchased by high-income households, which further reduces the price index faced by high-skill
agents. Consequently, the fall in optimal marginal tax rates is amplified. At the bottom of the distribution,
marginal tax rates fall by an additional 2.5 percentage points.

In sum, the results from Figure A2 highlight that, to be able to adjust the tax schedule optimally, it is
important to measure inflation and spending patterns across the income distribution using granular data.

The response of the tax schedule to inflation inequality in the Diamond-Mirrlees model. Finally, we apply the
comparative static approach formula to the Diamond Mirrlees model, where goods are produced com-
petitively and all profits are taxed, as in Section 4.3. Appendix Figure A3 reports the partial-equilibrium
response of the tax schedule to price changes measured in the CEX-CPI linked dataset. The response is
similar to our benchmark model but is magnified, with a fall in marginal tax rates of 10pp percentage
points at the bottom of the distribution (instead of 6pp in Figure 1, where the work subsidy reduces the
sensitivity of taxes to the price shock). This result shows that some of the lessons from the quantitative
analysis are not specific to our benchmark model of the supply side.

5.2.2 The Response of the Tax Schedule to Exogenous Shifts in the Skill Distribution

In this section, we characterize quantitatively the optimal response of the tax schedule to exogenous shifts
in the income distribution, accounting for the endogenous response of prices. Using the publicly available
statistics on the income distribution from the U.S. Census, we recover the shifts in the skill distribution
from the observed shifts in the income distribution from 2004 to 2015.77 Empirically, income is stagnant
at the bottom of the distribution, and increases at faster and faster rates with higher incomes.

Partial and general equilibrium results. Using Proposition A2, Figure 3 reports the optimal response of
marginal tax rates. We first consider the direct, partial equilibrium response to the change in the skill dis-
tribution, with fixed prices. As characterized by Proposition A2, as the income distribution becomes more
spread out, the value of redistribution at higher incomes falls, which pushes for a more redistributive tax
schedule, with higher marginal tax rates. Because of the shifts in the skill distribution, there is relatively
more mass at the top and bottom of the skill distribution, hence the distortionary cost of taxation is higher
in this range, while it is reduced in the middle of the distribution. To increase redistribution efficiently, it
is therefore optimal to raise marginal tax rates especially in the middle of the income distribution. Thus,
Figure 3 shows that optimal marginal tax rates increase by about 2.5pp at the bottom of the distribution,
by about 5pp in the middle, and by 1pp at the very top.

Furthermore, general equilibrium effects are at play through prices, as characterized in Proposition
7. The direct effects on prices of the shifts in inequality is amplified through income and substitution

77We use the historical series available at https://www.census.gov/data/tables/time-series/demo/income-
poverty/historical-income-households.html (Table H-2).
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effects, as well as changes in optimal tax rates. These effects tend to reduce optimal tax rates, because
the observed shift in the income distribution lowers the price of products with a high income elasticity.
Because higher-income agents have a higher marginal propensity to spend on these goods, it is optimal to
redistribute more toward them by lowering marginal tax rates, through the same channels as in Section
4.1. Quantitatively, with σ = 0.6 optimal tax rates are reduced by a few percentage points, relative to the
optimum in partial equilibrium, throughout the distribution. The fall in marginal tax rates is larger with
σ = 2, reaching about -4pp at the bottom of the distribution. In this case, marginal tax rates fall below the
observed tax schedule at the bottom of the income distribution.

Finally, Figure 3 also shows the combined impact of the shift in the skill distribution and exogenous
changes in prices. Price changes are measured from 2004 to 2015 as in Section 5.2.1, except that the es-
timation accounts at the same time for the shift in the skill distribution and the induced price changes,
i.e. we estimate the “residual” price shocks to match observed price changes. Taking into account these
residual price shocks leads to a substantial reduction in optimal tax rates at the bottom of the distribution.
Indeed, as in Section 5.2.1, price shocks increase the value of redistribution at the top. Quantitatively,
the direct price effects, which imply more redistribution toward higher-skill agents, more than offset the
motive for increased redistribution toward low-skill agents from the shift in the skill distribution. Taking
into account all effects, the optimal tax schedule becomes less redistributive. These results show that it is
important to jointly study shifts in the skill distribution and price shocks.

The role of non-linear social preferences. Appendix Figure A4 shows the role of the curvature of the social
welfare function. Both with exogenous prices (as in panel (i)) and endogenous prices (as in panels (ii)
and (iii)), the response of the tax schedule is muted by additional curvature. Indeed, curvature tends to
mute the motives for redistribution created either directly by the shift in the skill distribution or by the
endogenous price response. We find that the changes in the optimal tax schedule remain substantial even
with non-linear social welfare functions.

5.3 Optimal Tax Schedule

In this subsection, we show the quantitative importance of increasing returns to scale and non-
homotheticities for optimal tax rates and welfare across the skill distribution. We first document the
impact of increasing returns to scale in a homothetic model, then isolate the impact of non-homotheticities.
Finally, we study the response of the tax schedule to exogenous price shocks. By introducing parametric
assumptions on preferences, these analyses are complementary with the first-order approximations of
Section 5.2, because they characterize how our new channels affect the optimum when accounting for
potential non-linearities. Online Appendix B.4 provides a complete discussion of the solution algorithm.

5.3.1 The Interaction between Returns to Scale and Redistributive Motives

We first investigate the impact of returns to scale on the optimal tax schedule under homothetic utility, i.e.
with v (z∗, p) ≡ z∗

p . We find that the interaction between the corrective tax and redistributive motives is
quantitatively large.

We consider a setting with a single sector, such that α can be interpreted as “aggregate” returns to scale.
In a multi-sector setting where increases in productivity in one sector occur at the expense of productivity
in another sector, the rows of matrix Aij sum up to zero and α = 0; in such a setting, with homothetic
utility the sectoral returns to scale leave the tax schedule unaffected, as shown in Proposition 3. With
aggregate returns α, the “naive” interpretation of Proposition 3 is that, relative to the CRS tax schedule,
the planner should uniformly subsidize nominal wages 1− T′ at a constant rate 1/(1− α) throughout the
distribution.
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The solid blue line in Figure 4 shows the baseline optimal tax schedule under CRS and a logarithmic
social welfare function. The optimal marginal tax rates start around 68% at the bottom of the income
distribution, fall gradually to 58% at the 80th percentile, and then increase toward 68% at the top. The
dashed blue line depicts the tax schedule with the naive correction for increasing returns to scale, with
α = 0.30, whereby the net-of-tax wage is increased by 43% everywhere.78

The solid red line shows the optimal tax schedule under returns to scale with a logarithmic social wel-
fare function. The fall in marginal tax rates is much smaller than with the naive correction. This result
shows that the curvature of the social welfare function plays a quantitatively important role in determin-
ing the correction for increasing returns to scale, i.e. there is an important interaction with redistributive
motives. It is optimal for the cost of the work subsidy to be predominantly paid by high-skill agents,
hence marginal tax rates do not fall as much as with the naive correction. In Appendix Figure A5, we
show that the interaction remains quantitatively large with other parameter values for the labor supply
elasticity and the CRRA coefficient of the social welfare function.

By contrast, with linear Pareto welfare weights, set to match welfare weights at the CRS optimum, the
“naive” correction is correct. To isolate the role of non-homotheticities independently of the curvature
of the social welfare function, we take the specification with Pareto weights as our baseline in the next
subsections. The Pareto weights are set as λ(θ) ≡

(
Uoptim(θ)

)−σ̃, where Uoptim(θ) is the solution of the op-
timal taxation problem with homothetic utility, constant returns to scale (α = 0), and the CRRA parameter
σ̃ for the social welfare function.

5.3.2 The Role of Non-Homotheticities

We now turn to a specification with non-homothetic utility, using non-homothetic CES (nhCES) prefer-
ences as in Hanoch (1975), Matsuyama (2019), and Comin et al. (2021).

Parametric Assumptions. The indirect utility function v (z∗, p) is given by v ≡ v (z∗, p) ≡ F(Q), where
Q is the consumption vector of the agent over the set of products i ∈ I . Indirect utility v is implicitly
defined by:

∑
i∈I

(Ωivεi)
1
σ Q

σ−1
σ

i = 1.

NhCES preferences have convenient features, in particular
∂ log(Qi/Qj)

∂ log(v) =
(
ε i − ε j

)
and

∂ log(Qi/Qj)
∂ log(pj/pi)

=

σ ∀i, j ∈ I . This tractable specification allows us to separately examine the impact on the tax sched-
ule of the “utility elasticities” {ε}i∈I , which govern non-homothetic spending patterns, and the elasticity
of substitution σ.

For tractability, in our calibration we consider two products, labelled “high quality” and “low quality”
products. In line with evidence on the substitutability between products within the same detailed product
category (Broda and Weinstein (2006), Broda and Weinstein (2010), DellaVigna and Gentzkow (2019), and
Handbury (2019)), we set σ = 2. We then specify the elasticities {ε}H,L to match the dissimilarity index
of consumption shares observed across the income distribution in the Consumer Expenditure Survey in
2014;79 we obtain εL = −7 and εH = −1.5, implying that low-income households have a large marginal
propensity to spend on the low-quality goods.

Baseline simulation. Figure 5 characterizes the impact of non-homotheticities in our baseline specifica-

78These results show that it is important to take into account returns to scale for optimal tax design: the effect on optimal tax
rates is large. In practice, the adjustment could be made through the tax schedule or through other tax instruments, for example
VAT.

79We compute the dissimilarity index at the level of the product categories available in the CEX interview files, called UCCs.
We focus on 2014 as the data on the observed tax schedule from Hendren (2020) is available for that year.
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tion relative to the homothetic case, with α = 0.3 and Pareto weights from the logarithmic social welfare
function. Panels (a) and (b) shows the effect of introducing non-homotheticities on optimal marginal tax
rates. Due to non-homotheticities, marginal tax rates increase over the full range of the income distri-
bution. The increase is larger at the bottom of the income distribution, with an increase in marginal tax
rates of about 6pp for levels of earned income below $20,000. The increase is about 2pp at an income
level of $100,000, and then gradually decreases, reaching levels close to zero above $300,000. Thus, the
simulations show that non-homoheticities have a significant quantitative impact on optimal marginal tax
rates.

Panels (c) through (e) of Figure 5 investigate the mechanism explaining the change in marginal tax
rates, which operates through the change in equilibrium prices and in the marginal utility of redistribution
across the skill distribution. Panel (c) reports the equilibrium prices, normalized to one at the observed tax
schedule. In the homothetic specification with increasing returns, the price index increases by about 3.6%
at the optimal tax schedule, because preferences for redistribution induce higher taxes than at the observed
schedule, which reduces labor supply and market size and thus drives an increase in the price. With
non-homotheticities, prices of the high-quality and low-quality products diverge: the price of the high-
quality good increases by 14%, while the low-quality product becomes 10% cheaper. Indeed, additional
redistribution (relative to the observed schedule) leads to an increase in the relative market size of the
product which has a higher marginal propensity to consume from low-income households, i.e. the low-
quality product in our specification. This result shows that the response of the optimal tax schedule to
non-homotheticities lead to large endogenous price changes in equilibrium.

Panel (d) shows that the induced change in the marginal utility of disposable income across agents
is substantial. While under homothetic utility the marginal utility is about 0.965 (= 1/p) throughout
the distribution, with non-homotheticities the marginal utility is 0.99 at the bottom, falls gradually to
0.85 around $150,000, and then increases slightly. The fall in marginal utility is largest for the agents
with the highest marginal propensity to consume on the high-quality good, which in equilibrium occurs
for earned income levels around $150,000 in our simulation. Panel (e) combines each agent’s marginal
utility of disposable income with Pareto weights and shows a steeper decline in welfare weights across
the distribution with the non-homothetic specification, because of the price effects.

Finally, panel (f) summarizes the willingness to pay of agents for the optimal tax schedule under non-
homotheticitic preferences, relative to the optimal schedule under homothetic preferences.80 The equiva-
lent variation is close to 15% in the bottom decile of the income distribution and decreases monotonically
throughout the distribution, turning negative in the 7th income decile. In the top decile, the welfare loss
from the new schedule, and its induced price effects, is about 9%. These estimates show that adjusting the
tax schedule for non-homotheticities generates substantial distributional effects, with large welfare gains
at the bottom of the distribution. Although panels (a) and (b) depicted an increase in marginal tax rates
at the bottom of the distribution, overall the change in the tax schedule benefits low-income households
more. Indeed, setting higher marginal tax rates at the bottom of the income distribution raises the overall
amount of redistribution in a more efficient way than increasing marginal tax rates at the top, and the
induced price effects benefit agents with a high average spending share on the low-quality product.

Thus, the baseline simulation shows that non-homotheticities can have meaningful quantitative im-
plications for optimal taxation. The results account for all feedback loops between the desirability of

80We study the equivalent variation defined by:

ṽ (z∗H(θ) + EV(θ), pH)− ψ

(
zH(θ)

θ

)
= uNH(θ),

where H denotes the equilibrium each under the optimal tax schedule with homothetic preferences, while NH corresponds to
the equilibrium with non-homothetic preferences.
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redistributing more and the induced price changes. As the relative price of the low-quality product de-
creases, it is optimal to redistribute more to those with a higher marginal propensity to consume, which
induces further tax changes and changes in labor supply, etc. The strength of these feedback loops depend
on the parameters governing increasing returns and social preferences for redistribution, which we turn
to next.

Sensitivity to increasing returns. Figure 6 reports the simulation results with larger increasing returns,
setting α = 0.4, close to the baseline estimate of 0.42 in Jaravel (2019). The results and channels described
for the baseline specification are all amplified by the larger increasing returns. Optimal marginal tax rates
increase by 11.5 percentage points at the bottom of the income distribution (panel (b)). The price of the
high quality good increases by 22%, while the price of the low-quality good falls by 18% (panel (d)).
The new tax schedule and the induced price effects create welfare gains of 35% at the bottom of the skill
distribution, and welfare losses of 16% at the top.

Sensitivity to preferences for redistribution. With α = 0.30, Figure 7 investigates the effects with weaker
preferences for redistribution. The Pareto weights are taken from the optimal schedule with constant re-
turns to scale and a social welfare function with a CRRA coefficient of 0.5, rather than 1 as previously. With
this specification, the impact of non-homotheticities on the optimal tax schedule is muted. The marginal
tax rate increases by 3.75pp at the bottom of the distribution (panel (b)), the price of the high quality
product increases by about 3.75%, while the price of the low-quality product falls by about 3.5% (panel
(d)). The willingness to pay for the tax schedule accounting for non-homotheticities remains meaningful,
especially at the bottom of the income distribution, with a welfare gain of 12% in the bottom decile and a
welfare loss of about 3% in the top decile.

These results illustrate the interplay between social preferences for redistribution and endogenous
prices. A weaker taste for redistribution endogenously leads to smaller changes in market size, hence
smaller price changes in equilibrium and a smaller adjustment to optimal marginal tax rates.

In sum, the optimal tax schedule is sensitive to non-homotheticities because redistribution induces
changes in relative prices and hence in the value of further redistribution. Another mechanism whereby
price effects can arise is exogenous productivity shocks; this channel also has implications for the optimal
tax schedule, which we document next.

5.3.3 The Impact of Exogenous Price Shocks

We now characterize the response of the optimal tax schedule to exogenous price shocks. As in Section 5.2,
this analysis is motivated by the observed heterogeneous price changes across product categories in the
United States, with lower inflation in product categories purchased by high-income households.81 The
simulations account for feedback loops created by large price changes, and thus complement the first-
order approximations in Section 5.2. To assess the quantitative relevance for the optimal schedule, we
consider an exogenous productivity shock (to parameters γi), whose direct partial equilibrium effect is
to reduce the price of the high-quality good by 2.5% and to increase the price of the low-quality good by
2.5%.82

Baseline simulation. Figure 8 reports the results under the baseline parametrization. The exogenous
price shock leads to lower taxes: marginal tax rates fall by about 3.25pp at the bottom of the income
distribution, and gradually converge back to the reference tax schedule under homothetic utility, with a

81For example, Jaravel (2019) documents that, for consumer packaged goods in the United States, annual inflation is about
2.5pp lower in the top price decile (a proxy for quality), compared with the bottom price decile.

82Given our calibration for non-homotheticities, the induced change in the price index is 3.1 pp higher in the bottom decile
of the income distribution, compared with the top decile. This corresponds to the level of inflation inequality reached over 8.5
years in U.S. data (Jaravel (2019)).
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fall in marginal tax rates under 0.10pp for levels of income above $300,000 (panels (a) and (b)).
To understand the mechanism, it is instructive to examine how the exogenous shocks affect equilib-

rium prices. Without shocks, prices are identical to the baseline non-homothetic specification studied in
Figure 5 (panel (c)). In partial equilibrium, the shocks would reduce the price of the high-quality good
from 1.14 to 1.11 and would increase the price of the low-quality good from 0.9 to 0.92. Panel (c) of Figure
8 shows the amplification of the price shocks through consumer demand, additional redistribution and
returns to scale: the equilibrium prices are 1.055 for the high-quality good and 0.96 for the low-quality
goods. In general equilibrium, the convergence of relative prices is much larger than the partial equilib-
rium shocks. Consequently, there is a substantial increase in the value of transferring an additional dollar
to high-income households, who have a higher marginal propensity to consume on the high-quality good
(panels (d) and (e)).

Thus, it is desirable for the planner to redistribute toward high-income households, which can be done
efficiently by reducing marginal tax rates at the bottom of the income distribution. The welfare effects are
substantial, with an equivalent variation of -6% in the bottom decile and +8.5% in the top decile.

Sensitivity to increasing returns. Figure 9 shows the results with higher returns to scale (α = 0.4), which
magnifies the impact of the exogenous productivity change. The fall in marginal tax rates at the bottom
of the income distribution is about 12pp (panel (b)). The GE amplification of price changes is much larger
and flips the relative price of the high- and low-quality bundles (panel (c)). The distributional effects are
large, with an equivalent variation ranging from -26% at the bottom to +24% at the top.83

Sensitivity to preferences for redistribution. Figure 10 documents the role of social preferences for redis-
tribution, setting the Pareto weights to match the optimal schedule with constant returns to scale and a
social welfare function with a CRRA coefficient of 0.5. The impact of exogenous price shocks is much
larger than in the baseline specification, with a fall in marginal tax rates of 13pp at the bottom of the
income distribution (panel (b)).

To understand the mechanism, panel (c) reports equilibrium prices. Before the exogenous shock, equi-
librium prices are 0.965 for the low-quality product and 1.0375 for the high-quality product (identical to
Figure 7). After the shock, the price of the low-quality product increases substantially, reaching 1.07, while
the price of the high-quality good falls to 0.955 only. The amplification of price effects is sufficiently large
to flip the relative price of the high- and low-quality bundles.

When social preferences for redistribution are low, the planner puts larger weight on the change in
utility out of disposable income for high-skill agents. Therefore, the planner is more responsive to the
initial fall in the relative price of the high-quality good and redistributes more toward the rich, which
induces a feedback loop of changes in labor supply, spending, and prices, leading to further changes in
redistribution, etc. Quantitatively, this mechanism is strong enough to flip equilibrium relative prices and
increase high-skill agents’ utility out of disposable income above 1 (panel (d)). As depicted on panel (f),
the shock results in a large welfare loss at the bottom of the income distribution (-32%) and substantial
welfare gains at the top (+10%).

The comparison of these results with those from Figure 7 are instructive to understand the mechanism
driving the interplay between endogenous prices, increasing returns, and social preferences for redistri-
bution. In Figure 7, weaker social preferences induced an optimal tax schedule with less redistribution
toward the poor, implying smaller changes in relative market size, and hence smaller endogenous price
changes. In that setting, absent exogenous shocks, weaker social preferences for redistribution reduce the
importance of non-homotheticities for the optimal tax schedule, because prices change less. Introducing

83Conversely, Appendix Figure A6 shows the results with lower returns to scale (α = 0.2), which reduce the impact of the
exogenous productivity change. The fall in marginal tax rates at the bottom of the income distribution is about 1.70pp, the GE
amplification of price changes is smaller, and the distributional effects are more modest, with an equivalent variation ranging
from -2.4% at the bottom to +5% at the top.
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exogenous price shocks, Figure 10 shows that the response to price shocks is magnified with weaker so-
cial preferences, which induce more redistribution toward those with high MPCs on the cheaper products,
which amplifies the exogenous shocks and lead to larger changes in equilibrium prices.

Overall, the results show that exogenous price shocks can have a large impact on the optimal tax
schedule, and that there are important amplification effects through increasing returns and the endoge-
nous social value of redistribution. In all simulations, a unifying mechanism operates: changes in equi-
librium prices and the distribution of marginal propensities to consume govern the change in the optimal
tax schedule.

Conclusion

In this paper, we have shown that optimal commodity and income taxation is sensitive to exogenous price
shocks, the elasticity of prices to market size, and non-homothetic preferences. We provided an explicit
analytical characterization of the channels whereby prices and non-homotheticities affect optimal taxa-
tion in general equilibrium. Using simulations based on observed spending patterns and the empirical
elasticity of prices to market size, we found that these novel channels have a sizable quantitative impact
on optimal marginal tax rates and welfare across the skill distribution.

This analysis was motivated by the fact that observed price changes are heterogeneous across product
categories and across the income distribution, and that empirically prices are endogenous to market size.
Going forward, our framework could be used to study the response of optimal taxation to a variety of
supply shocks that could affect prices, for example due to changes in technology, trade, immigration, or
market concentration. Although we considered a closed economy, we conjecture that the mechanisms we
highlighted might become even richer in a model with trade. Changes in domestic demand can be even
more important in an open economy than in a closed economy (Matsuyama (2019)) because they have
an impact on the equilibrium patterns of specialization, which in turn have an impact on the direction of
productivity growth through market size effects. Analyzing optimal taxation in an open economy model
with non-homothetic preferences and endogenous prices is thus a promising direction for future research.
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Figure 1: The Response of the Optimal Tax Schedule to Observed Price Shocks (2004-2015), CEX-CPI data
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(i) σ = 0.6 (ii) σ = 2

Notes: the IRS parameter is set to α = 0.3 and the labor supply elasticity to ε = 0.21; the CEX-CPI dataset is used in both panels and the initial
tax schedule is taken from Hendren (2020). See Section 5.2.1 for a description of the quantitative model and counterfactuals.

Figure 2: The Role of the Curvature of the Social Welfare Function

(i) σ = 0.6 (ii) σ = 2

Notes: the IRS parameter is set to α = 0.3 and the labor supply elasticity to ε = 0.21. The CEX-CPI dataset is used in both panels and the
initial tax schedule is taken from Hendren (2020). See Section 5.2.1 for a description of the quantitative model and counterfactuals.
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Figure 3: The Response of the Optimal Tax Schedule to Observed Shifts in the Skill Distribution (2004-2015)
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Notes: the IRS parameter is set to α = 0.3 and the labor supply elasticity to ε = 0.21; the U.S. Census and CEX-CPI datasets are used in both
panels and the initial tax schedule is taken from Hendren (2020). See Section 5.2.2 for a description of the quantitative model and counterfactuals.

Figure 4: Returns to Scale and the Optimal Tax Schedule
(α = 0.3, ε = 0.21, SWF CRRA=1)
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Figure 5: The Response of the Optimal Tax Schedule to Non-Homotheticities
(α = 0.3, εz = 0.21, Pareto weights from SWF CRRA=1)
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(c) Equilibrium Prices (d) ∂ṽ/∂z∗ by Earned Income
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(e) ∂ṽ/∂z∗ ·G′(θ) by Earned Income (f) EV relative to Optimal Homothetic Tax Schedule

Notes: The quantitative model uses Pareto weights computed at the optimal homothetic tax schedule obtained under a social welfare function
with CRRA=1, as described in Section 5.3.2.
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Figure 6: Higher Returns to Scale Magnify the Impact of Non-Homotheticities
(α = 0.4, εz = 0.21, Pareto weights from SWF CRRA=1)
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(c) Equilibrium Prices (d) ∂ṽ/∂z∗ by Earned Income
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Notes: The model uses Pareto weights computed at the optimal homothetic tax schedule obtained under a social welfare function with CRRA=1,
as described in Section 5.3.2.
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Figure 7: Lower Social Preferences for Redistribution Reduce the Impact of Non-Homotheticities
(α = 0.3, εz = 0.21, Pareto weights from SWF CRRA=0.5)
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Notes: The quantitative model uses Pareto weights computed at the optimal homothetic tax schedule obtained under a social welfare function
with CRRA=0.5, as described in Section 5.3.2.
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Figure 8: The Response of the Optimal Tax Schedule to Productivity Shocks
(α = 0.3, εz = 0.21, Pareto from SWF CRRA=1, PE price low-quality +2.5%, PE price high-quality -2.5%)
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(c) Equilibrium Prices (d) ∂ṽ/∂z∗ by Earned Income Before vs. After Price Shocks
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(e) ∂ṽ/∂z∗ ·G′(θ) by Earned Income (d) EV , initial vs. new schedules

Notes: The quantitative model uses Pareto weights computed at the optimal homothetic tax schedule obtained under a social welfare function
with CRRA=1. The exogenous productivity changes are such that the partial equilibrium price of the low-quality bundle increases by 2.5% while
the partial equilibrium price of the high-quality bundle decreases by 2.5%, as described in Section 5.3.3.
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Figure 9: Higher Returns to Scale Magnify the Impact of Productivity Shocks
(α = 0.4, εz = 0.21, Pareto weights from SWF CRRA=1, PE price low-quality +2.5%, PE price high-quality -2.5%)
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Figure 10: Lower Social Preferences for Redistribution Magnify the Impact of Productivity Shocks
(α = 0.3, εz = 0.21, Pareto weights from SFW CRRA=0.5, PE price low-quality +2.5%, PE price high-quality -2.5%)
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A Proofs

A.1 Proofs of Section 3

In this section we derive the optimal tax rates in our benchmark specification, and, for completeness, in the
Diamoond-Mirrlees case. This will prove the results of Section 3.

A.1.1 Benchmark Model

We consider here the general planning problem.

sup
V(θ),z(θ),qi

∫
G(V(θ))π(θ)dθ

s.t. V′(θ) = Uθ(v(θ), z(θ), θ) and
∫

z∗(θ)− z(θ)π(θ)dθ − (q − p) · C ≤ 0

with V(θ) = U(v(θ), z(θ), θ), v(θ) = u(c1(q, z∗(θ)), ..., cn(q, z∗(θ))), and z∗(θ) = q · c(q, z∗(θ))

Ci =
∫

ci(q, z∗(θ))π(θ)dθ and pi = ϕi(C1, ..., Cn)

Where v is the indirect sub-utility for consumption ci denotes demand for i and z∗ post-tax income.

After integration by parts, the corresponding lagrangian is:

L =
∫

G(V(θ))π(θ)dθ −
∫
(µ′(θ)V(θ) + µ(θ)Uθ(v(θ), z(θ), θ))dθ

−λ

(∫
z∗(θ)− z(θ)π(θ)dθ − (q − p) · C

)

1



where µ(θ) are the multipliers on the incentive constraints and λ is the multiplier on the resource constraint.

First Order Conditions. We start with the FOC with respect to consumer prices qi. Denoting ch(q, v) the
hicksian demand function at prices q for a given sub-utility v, we have:

dcj

dqi

∣∣∣∣
z,V

=
dcj

dqi

∣∣∣∣
v
=

∂ch
j

∂qi

dz∗

dqi

∣∣∣∣
z,V

=
dz∗

dqi

∣∣∣∣
v
= ci

We therefore have, denoting ∂qi C
h
j =

∫
∂qi c

h
j π(θ)dθ:

dL
dqi

= λ

(
Ci + ∑

j

(
qj − pj − ∑

k
∂Qj ϕkCk

)
∂qi C

h
j − Ci

)

Which gives for all i:

∑
j

(
qjCj −

(
pjCj − ∑

k
Ak,j pkCk

))
Sj,i = 0

Where A and S are defined in the main text. We therefore have:

(1 − β)qC = (Id − A′)pC

Where β is a scaling constant. Denoting α the scaling such that q · C − p · C = 0 gives:

q · C − p · C =
1

1 − β

(
β ∑

i
piCi − ∑

i
piCi ∑

j
Ai,j

)

⇒ α =
∑i(∑j Ai,j)piCi

∑i piCi

With this scaling, the ad valorem commodity taxes are:

1 + ti =
1 − ∑j Aj,i pjCj/piCi

1 − α

Next, we derive the FOC associated with V. V(θ) impacts consumption and producer prices through

2



z∗(θ) with dz∗(θ)/dV(θ) = (Uvvz∗)
−1. We thus have:

0 = G′(V(θ))π(θ)− µ′(θ)− µ
Uθ,v

Uv
− λπ(θ)

Uvvz∗

[
1 − ∑

i

(
qi − pi − ∑

j
Cj∂Qi ϕj

)
∂z∗ci(θ)

]

= G′(V(θ))π(θ)− µ′(θ)− µ
Uθ,v

Uv
− λπ(θ)

Uvvz∗

[
1 − ∑

i

(
qi − pi

(
1 − ∑

j

pjCj

piCi
Aj,i

))
∂z∗ci(θ)

]

= G′(V(θ))π(θ)− µ′(θ)− µ
Uθ,v

Uv
− λπ(θ)

Uvvz∗

[
1 − α ∑

i
qi ∂z∗ci(θ)

]

⇒µ′(θ)
Uvvz∗

λ
+ µ

Uθ,vvz∗

λ
= −

(
1 − α − G′(V(θ))Uvvz∗

λ

)
π(θ)

Finally, defining µ̃ = µ Uvvz∗/λ, we have:

µ̃′(θ) + µ̃ ∂z∗ MRS z′(θ) = −
(

1 − α − G′(V(θ))Uvvz∗

λ

)
π(θ)

With MRS = −Uz/Uvvz∗ the marginal rate of substitution.

Finally, the FOC associated to z, using the same steps as above to derive the response of consumption and
prices, are:

0 = µ(−Uθ,z − Uθ,z∗ MRS)− λπ(θ) (MRS − 1 − αMRS)

⇒ µ̃ ∂θ MRS = π(θ)((1 − α)MRS − 1)

Since MRS = 1− T′(z(θ)), and zζ̃∂θ MRS = −z′(θ)(1− T′(z(θ))) where ζ̃ is defined in the main text we
therefore have, denoting f (z(θ)) = π(θ)/z′(θ)

µ̃(θ) = f (z)zζ̃

(
T′

1 − T′ + α

)
Finally, using −zζ̃ ∂z∗ MRS = η̃ we get:

f (z)zζ̃

(
T′

1 − T′ + α

)
+
∫ z(θ̄)

z(θ)
η̃

(
T′

1 − T′ + α

)
f (z)dz =

∫ z(θ̄)

z(θ)

(
1 − α − G′Uvvz∗

λ

)
f (z)dz

Using g = G′Uvvz∗/((1 − α)λ) we obtain the formula of Proposition 2.
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Optimal Taxation without Commodity Taxes The planner’s problem is now:

sup
V(θ),z(θ)

∫
G(V(θ))π(θ)dθ

s.t. V′(θ) = Uθ(v(θ), z(θ), θ) and
∫

z∗(θ)− z(θ)π(θ)dθ ≤ 0

with V(θ) = U(v(θ), z(θ), θ), v(θ) = u(c1(p, z∗(θ)), ..., cn(p, z∗(θ))), and z∗(θ) = p · c(q, z∗(θ))

Ci =
∫

ci(p, z∗(θ))π(θ)dθ and pi = ϕi(C1, ..., Cn)

After integration by parts, the corresponding lagrangian is:

L =
∫

G(V(θ))π(θ)dθ −
∫
(µ′(θ)V(θ) + µ(θ)Uθ(v(θ), z(θ), θ))dθ

−λ

(∫
z∗(θ)− z(θ)π(θ)dθ

)
where µ(θ) are the multipliers on the incentive constraints and λ is the multiplier on the resource constraint.

First Order Conditions. We derive the FOC associated with V. Increasing the welfare of θ agents will
endogenously move prices which requires compensating all other agents. We thus have: dz∗(θ′)/dV(θ) =

1θ=θ′(Uvvz∗)
−1 + ∑ ci(p, z∗(θ) dpi

dV(θ)
. The change in aggregate consumption is given by:

dCi
dV(θ)

= ∑
∂Ch

i
∂pj

dpj

dV(θ)
+ ∂z∗ci(p, z∗(θ))

π(θ)

Uvvz∗

With ∂Ch
i /∂pj = E(∂pj c

h(p, z∗(θ)) the average price derivative of Hicksian demand. We therefore have:

1
pj

dpj

dV(θ)
= −∑ AjkSkl

1
pl

dpl
dV(θ)

− ∑ Ajk
∂z∗ck(p, z∗(θ))π(θ)

Ck

1
Uvvz∗

Which gives: [
1
pj

dpj

dV(θ)

]
= (Id + AS)−1 A

[
∂z∗ck(p, z∗(θ))π(θ)

Ck

]
1

Uvvz∗

We define the market elasticity α̃i as:

α̃i = [s1..sn](Id + AS)−1 A[0..1/si..0]′
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And α̃ = ∑ α̃iE(∂z∗ ei). The first order conditions are therefore

0 = G′(V(θ))π(θ)− µ′(θ)− µ
Uθ,v

Uv
− λπ(θ)

Uvvz∗

[
1 − ∑

i
α̃i ∂z∗ei(p, z∗(θ))

]

Defining µ̃ = µ Uvvz∗/λ, we have:

µ̃′(θ) + µ̃ ∂z∗ MRS z′(θ) = −
(

1 − G′(V(θ))Uvvz∗

λ
− ∑

i
α̃i ∂z∗ei(p, z∗(θ))

)
π(θ)

The FOC associated to z, following the same steps givse:

µ̃ ∂θ MRS = π(θ)((MRS − 1 − MRS ∑
i

α̃i ∂z∗ei(p, z∗(θ)))

Putting everything together, we therefore have:

f (z)zζ̃
T′

1 − T′ +
∫ z(θ̄)

z(θ)
η̃

T′

1 − T′ f (z)dz =
∫ z(θ̄)

z(θ)

(
1 − G′Uvvz∗

λ

)
f (z)dz

− ∑
i

α̃i
(
zζ̃ f (z)∂z∗ei + Ez′>z((1 − η̃)∂z∗ei)

)
Finally, noting that ∑ α̃∂z∗ ei = α̃ and using g = G′Uvvz∗/((1 − α̃)λ) (Note that without income effects we
have λ = E(G′Uvvz∗)/(1 − α̃)). We have:

f (z)zζ̃

(
T′

1 − T′ + α̃

)
+
∫ z(θ̄)

z(θ)
η̃

(
T′

1 − T′ + α̃

)
f (z)dz = (1 − α̃)

∫ z(θ̄)

z(θ)

(
1 − G′Uvvz∗

λ

)
f (z)dz

− ∑
i
(α̃i − α̃)

(
zζ̃ f (z)∂z∗ei + Ez′>z((1 − η̃)∂z∗ei)

)
With η̃ = 0 we obtain the formulas in the main text. With a constant elasticity of substitution and a diagonal
A we obtain the formula of the main text for α̃i with a simple application of the Sherman-Morrison formula.

A.1.2 Diamond-Mirrlees Specification

We consider the specification described in the main text: the cost of producing Q1, ..., Qn is given by χ and
all profits are taxed.
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sup
V(θ),z(θ),qi

∫
G(V(θ))π(θ)dθ

s.t. V′(θ) = Uθ(v(θ), z(θ), θ) and χ(C1, ..., Cn)−
∫

z(θ)π(θ)dθ ≤ 0

with V(θ) = U(v(θ), z(θ), θ), v(θ) = u(c1(q, z∗(θ)), ..., cn(q, z∗(θ))), and z∗(θ) = q · c(q, z∗(θ))

Ci =
∫

ci(q, z∗(θ))π(θ)dθ

The lagrangian is:

L =
∫

G(V(θ))π(θ)dθ −
∫
(µ′(θ)V(θ) + µ(θ)Uθ(v(θ), z(θ), θ))dθ

−λ

(
χ(C1, ..., Cn)−

∫
z(θ)π(θ)dθ

)

First Order Conditions. We start with the FOC with respect to consumer prices qi. With the same notation
as above, we have:

∑
j

∂Qj χ∂qi C
h
j = 0

Therefore, we have qi = ∂Qj .

Next, the first order condition for V are:

0 = G′(V(θ))π(θ)− µ′(θ)− µ
Uθ,v

Uv
− λπ(θ)

Uvvz∗
∑

i
∂Qi χ ∂z∗ci(θ)

⇒ µ′(θ)
Uvvz∗

λ
+ µ

Uθ,vvz∗

λ
= −π(θ)

(
1 − G′(V(θ))Uvvz∗

λ

)
⇒ µ̃′(θ) + µ̃ ∂z∗ MRS z′(θ) = −

(
1 − G′(V(θ))Uvvz∗

λ

)
π(θ)

Finally, the FOC for z

µ̃ ∂θ MRS = π(θ)(∑
j

∂Qj χ ∂z∗cj MRS − 1)

⇒ µ̃ ∂θ MRS = π(θ)(MRS − 1)

So we have qj = ∂Qj χ and:

f (z)zζ̃
T′

1 − T′ +
∫ z(θ̄)

z(θ)
η̃

T′

1 − T′ f (z)dz =
∫ z(θ̄)

z(θ)

(
1 − G′Uvvz∗

λ

)
f (z)dz
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A.2 Proofs of Section 4

We prove here the comparative statics formulas in the case where U(v(q, z∗), z, θ) = v(q, z∗)− χ(z/θ)1+ 1
ϵ /

(1 + 1
ϵ ) and v(q0, z∗) = z∗ at initial consumer prices q0.

Proof of Proposition 4. Under the assumption of proposition 4, we have G(V(θ)) = λ(θ)V(θ), we
consider here the derivative of the tax rate T′(z(θ)) with respect to qi keeping α (and the prices p) fixed at
their initial values.

We have:

µ̃(θ)∂θ ln(MRS) = π(θ)(1 − α − MRS−1)

⇒ dµ̃(θ)

dqi
∂θ ln(MRS) + µ̃(θ)

d∂θ ln(MRS)
dqi

= −π(θ)
dMRS−1

dqi

Since ∂θ ln(MRS) = ∂θ{−(1 + 1
ϵ )ln(θ)} = −(1 + 1

ϵ )θ
−1, we have d∂θ ln(MRS)

dqi
= 0 which gives:

dµ̃(θ)

dqi
= zζ̃ f (z)

dMRS−1

dqi

= zζ̃ f (z)
d

dqi

T′(z(θ))
1 − T′(z(θ))

∣∣∣∣
θ

We now turn to the FOC associated to V. Note that since v(q0, z∗) = z∗, we have MRSz∗ = 0 therefore:

µ̃′(θ) + µ̃ ∂z∗ MRS z′(θ) = −
(

1 − α − λ(θ)vz∗

λ

)
π(θ)

⇒ d
dθ

dµ̃

dqi
+ µ̃ z′(θ)

d∂z∗ MRS
dqi

= π(θ)

(
λ(θ)

λ

dvz∗

dqi
− λ(θ)vz∗

λ2
dλ

dqi

)

We first need to compute the derivatives of vz∗ and vz∗ ,z∗ . We have, using vz∗z∗ = 0:

dvz∗(z(θ)− T(z(θ), q)
dqi

= vz∗z∗

(
(1 − T′)

dz
dqi

+
dT
dqi

)
+

∂vz∗

∂qi
=

∂vz∗

∂qi

Next using Roy’s Identity for the sub-problem of choosing consumption conditional on z∗, we have ∂qi v =

−vz∗ci, so:

∂vz∗

∂qi
=

∂

∂z∗
∂v
∂qi

= −vz∗z∗ci − vz∗∂z∗ci = −vz∗∂z∗ci

Similarly, we have:

dvz∗z∗

dqi
=

∂vz∗z∗

∂qi
= −vz∗∂z∗z∗ci
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Using these we have:

dMRSz∗

dqi
=

d
dqi

{(
− Uz

vz∗

)(
−vz∗z∗

vz∗

)}
= (1 − T′)∂z∗z∗ci

Plugging these in the FOC for V and integrating gives:

zζ̃ f (z)
d

dqi

T′(z(θ))
1 − T′(z(θ))

∣∣∣∣
θ

=
∫

z>z(θ)

λ(θ)

λ

(
∂z∗ci −

1
λ

dλ

dqi

)
f (z)dz

+
∫

z>z(θ)
zζ̃

(
T′

1 − T′ + α

)
(1 − T′)∂z∗z∗ci f (z)dz

Finally, using
∫

1 − α − λ(θ)/λ f (z)dz = 0 or (1 − α)λ = E(λ(θ)) and:

0 =
∫

λ(θ)

λ

(
∂z∗ci −

1
λ

dλ

dqi

)
f (z)dz +

∫
zζ̃

(
T′

1 − T′ + α

)
(1 − T′)∂z∗z∗ci f (z)dz

1
λ

dλ

dqi
=
∫

λ(θ)

E(λ(θ))
∂z∗ci f (z)dz +

1
1 − α

∫
zζ̃

(
T′

1 − T′ + α

)
(1 − T′)∂z∗z∗ci f (z)dz

Finally, using −
∫

z>z(θ) λ(θ)/λ f (z)dz = zζ̃ f (z)(T′/(1 − T′) + α) −
∫

z>z(θ) 1 − α f (z)dz, and denoting
g(θ) = λ(θ)/E(λ(θ)), we have:

zζ̃ f (z)
d

dqi

T′(z(θ))
1 − T′(z(θ))

∣∣∣∣
θ

= (1 − α) E
g
z>z(θ)(∂z∗ci − Eg(∂z∗ci))

+Ez>z(θ)

(
zζ̃

(
T′

1 − T′ + α

)
(1 − T′)∂z∗z∗ci − E

(
zζ̃

(
T′

1 − T′ + α

)
(1 − T′)∂z∗z∗ci

))
− 1

1 − α
zζ̃ f (z)(T′/(1 − T′) + α)E

(
zζ̃

(
T′

1 − T′ + α

)
(1 − T′)∂z∗z∗ci

)
Multiplying by qi gives the formula of proposition 4.

Proof of Proposition 5. To derive the formula of proposition 5, we need to rewrite the second and third
line of proposition 4 using the the FOC characterizing the optimal tax schedule. For any deviation dT(z) of
the tax schedule for z > z(θ), we have:

∫
z>z(θ)

zζ̃

(
T′

1 − T′ + α

)
dT′(z) f (z)dz + zζ̃ f (z)

(
T′

1 − T′ + α

)
dT(z(θ))

= (1 − α)
∫

z>z(θ)
(1 − g)dT(z) f (z)dz
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In particular, for dT(z) = ∂z∗ci since dT′(z) = (1 − T′)∂z∗z∗ci, we have:

(1 − α) E
g
z>z(θ)(∂z∗ci) =(1 − α)Ez>z(θ)(∂z∗ci)− zζ̃ f (z)

(
T′

1 − T′ + α

)
∂z∗ci

− Ez>z(θ)

(
zζ̃

(
T′

1 − T′ + α

)
(1 − T′)∂z∗z∗ci

)

Similarly, since µ̃(θ) = 0, we have:

Eg(∂z∗ci) = E(∂z∗ci)−
1

1 − α
E

(
zζ̃

(
T′

1 − T′ + α

)
(1 − T′)∂z∗z∗ci

)
Therefore:

−(1 − α)E
g
z>z(θ) (E

g(∂z∗ci)) = −(1 − α)Ez>z(θ)

(
E(∂z∗ci)−

1
1 − α

E

(
zζ̃

(
T′

1 − T′ + α

)
(1 − T′)∂z∗z∗ci

))
+zζ̃ f (z)

(
T′

1 − T′ + α

)(
E(∂z∗ci)−

1
1 − α

E

(
zζ̃

(
T′

1 − T′ + α

)
(1 − T′)∂z∗z∗ci

))

Putting everything together, we get:

zζ̃ f (z)
d

dqi

T′(z(θ))
1 − T′(z(θ))

∣∣∣∣
θ

= (1 − α) Ez>z(θ)(∂z∗ci − E(∂z∗ci))

−zζ̃ f (z)
(

T′

1 − T′ + α

)
(∂z∗ci − E(∂z∗ci))

Next we determine the sign of dqi T
′. First note that its sign is the same as zζ̃ f (z)dqi (T

′/(1 − T′) which
can be rewritten:

(1 − α) Ez>z(θ)(∂z∗ci − E(∂z∗ci))− (1 − α)Ez>z(θ)(1 − g) (∂z∗ci − E(∂z∗ci))

First note that the first term is negative (positive) when ∂∗z ci decreases (increases) with z(θ) (its derivative is
f (z)(E(∂z∗ci)− (∂z∗ci) so it is U-shaped in the first case and inverse U-shaped in the second and its value
is 0 at θ and θ̄). When ∂z∗ci is decreasing, the second term is negative for z < zm where zm is such that
∂z∗ci(zm − T(zm), q) = E(∂z∗ci) and positive for z > zm. Therefore dqi T

′ is negative for z < zm when ∂z∗ci is
decreasing. Similarly dqi T

′ is positive for z < zm when ∂z∗ci is increasing. To determine the sign for z > zm,
we simply examine the derivative of the full expression which is:

(1 − α)
(
− f (z(θ))g(z(θ))(∂z∗ci − E(∂z∗ci))− Ez>z(θ)(1 − g)(1 − T′)∂z∗z∗ci

)
The derivative is positive (negative) for z > zm when ∂z∗ci is decreasing (increasing). Since the expression
converges to 0 at z(θ̄) (possibly infinite), this proves the claim.

Finally if f g(z(θ)) > 0 inspecting the derivative directly shows that it is negative (positive) at the
bottom of the distribution when ∂z∗ci is decreasing (increasing).

9



Proofs of Section 4.2 To derive the response of consumption to achange in prices – including the response
of tax rates in partial equilibrium – it is easier to consider the change in taxes at fixed z rather than a fixed θ.
Propositions 6 characterizes explicitly how the tax rate responds to a change in prices, at a given percentile
of the income distribution. This characterization is not equivalent to the change in the tax schedule across
the income distribution, since it omits the labor supply response of agents.

Lemma 1. The change in tax rate at income z in response to an increase in the consumer price of good i is given by:

ζ̃

ζ

qi
1 − T′

∂T′

∂qi

∣∣∣∣
z
=

zζ̃T′′

1 − T′ ∂z∗ ei +
qi

1 − T′
∂T′

∂qi

∣∣∣∣
θ

Where θ is such that z(θ) = z before the price change.

The tax schedule is altered so that agents face exactly the tax rates derived in Proposition 6. Let us ignore
for a moment the effect of prices. When the tax rate at z is increased by dT′, the agent decreases her labor
supply by zζ̃dT′/(1 − T′) and is therefore subject to a new tax rate dT′(1 − ζ̃T′′/(1 − T′)) = ζ̃/ζdT′. The
coefficient ζ̃/ζ in the corollary therefore simply accounts for the change in labor supply, and the wedge on
agents’ incomes remains the same as in Proposition 5. In addition, when the price of i changes, the real
wage of the agent decreases and the agent works less. The impact of a price change on labor supply is given
by −zζ̃(1− T′)∂z∗ ei. The term zζ̃T′′/(1− T′)∂z∗ ei in the corollary corrects for the change in tax rate induced
by the effect of prices on labor supply. Note that when the tax rate is initially constant, we then have:

∂T′

∂qi

∣∣∣∣
z
=

∂T′

∂qi

∣∣∣∣
θ

,

i.e. the correction of the tax schedule simply account for the interaction between labor supply and the non-
linearity of the tax rate.

Finally, note that, in the homothetic case, even if the tax rate is unchanged at a given percentile of the
income distribution, the tax schedule is modified. Indeed, we then have:

∂T′

∂qi

∣∣∣∣
z
= T′′zζ∂z∗ci.

This is a wave equation, meaning that the tax rate at q′i > qi is such that T′(z)[q′i] = T′(a(q′i, qi)z)[qi], where
a(q′i, qi) is a constant independent of z. Even with homothetic utility, the tax schedule is altered to correct
for changes in labor supply.

Proof of Lemma 1. The proof is direct using the result of Saez (2002). A marginal change in the price qi is
equivalent to a change in tax dT(z) = −cidqi for both welfare and labor supply. Therefore we have:

dz(θ)
dqi

= −zζ̃

(
1

1 − T′
dT′

dqi

∣∣∣∣
z
− ∂z∗ci

)
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Which gives:

dT′

dqi

∣∣∣∣
θ

=
dT′

dqi

∣∣∣∣
z
− T′′zζ̃

(
1

1 − T′
dT′

dqi

∣∣∣∣
z
− ∂z∗ci

)
⇒ ζ̃

ζ

dT′

dqi

∣∣∣∣
z
=

dT′

dqi

∣∣∣∣
θ

+ zζ̃T′′∂z∗ci

To streamline notations, it is useful to introduce the notion of "change in real wedge" to summarize both
effects and derive the response of aggregate consumption and labor supply to price changes. Conceptually,
the change in real wedge captures the change in the marginal return to labor supply after a price change,
accounting for both the price change itself and the induced tax response.

Definition A.1. The change in real wedge T̃′ at z in response to an increase in the price of i is defined as:

qi
1 − T′

∂T̃′

∂qi

∣∣∣∣
z

:= ∂z∗ ei +
qi

1 − T′
∂T′

∂qi

∣∣∣∣
z

The change in real wedge can be expressed as:

ζ̃

ζ

qi
1 − T′

∂T̃′

∂qi

∣∣∣∣
z
= (1 − α)(1 − T′)

(
1

zζ̃ f (z)
Ez′>z (∂z∗ ei − E (∂z∗ ei)) + ∂z∗ ei − E (∂z∗ ei)

)
+ E (∂z∗ ei)

Finally, note that we have:

ζ̃

ζ

qi
1 − T′

∂T̃′

∂qi

∣∣∣∣
z
= ∂z∗ ei +

qi
1 − T′

∂T′

∂qi

∣∣∣∣
θ

Proof of Proposition 6. The joint effect of the tax and price change on individual consumption (noting that
dzcjdz = (1 − T′)∂z∗cjdz since preferences are weakly separable) is given by:

dcj

dqi
= −∂z∗cj

(
zζ̃

{
(1 − T′)∂z∗ci +

dT′

dqi

∣∣∣∣
z

}
+ ci +

dT
dqi

)
+

∂ch
j

∂qi

Where the last term corresponds to the standard price derivative of Hicksian demand. The aggregate re-
sponse is then given by:

dCj

dqi
= −E

(
∂z∗cj

(
zζ̃

{
(1 − T′)∂z∗ci +

dT′

dqi

∣∣∣∣
z

}
+ ci +

dT
dqi

))
+

∂Ch
j

∂qi
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We have:

E

(
∂z∗cj

(
ci +

dT
dqi

))
= E

((
∂z∗cj − E(∂z∗cj)

) (
ci +

dT
dqi

))
+ E(∂z∗cj)E

(
ci +

dT
dqi

)
= E

((
∂z∗cj − E(∂z∗cj)

) ∫ z

z(θ)

(
(1 − T′)∂z∗ci +

dT′

dqi

∣∣∣∣
z

)
dz
)
+ E(∂z∗cj)E

(
ci +

dT
dqi

)
=
∫ (

(1 − T′)∂z∗ci +
dT′

dqi

∣∣∣∣
z

)
Ez̃>z

(
∂z∗cj − E(∂z∗cj)

)
dz + E(∂z∗cj)E

(
ci +

dT
dqi

)

Next to express the second term in the equation above in terms of dT′ we use the government’s budget
constraint:

0 = E

(
ci +

dT
dqi

)
− E

(
zζ̃

T′

1 − T′

(
(1 − T′)∂z∗ci +

dT′

dqi

∣∣∣∣
z

))
+ ∑

j

(
qj − pj

(
1 − ∑

k

pkCk
pjCj

Ak,j

))
dCj

dqi

Where we used the the fact that the elasticity of pk with respect to Cj is −Ak,j. Using the definition of optimal
commodity taxes, this gives:

0 = E

(
ci +

dT
dqi

)
− E

(
zζ̃

T′

1 − T′

(
(1 − T′)∂z∗ci +

dT′

dqi

∣∣∣∣
z

))
+ ∑

j
αqj

dCj

dqi

= E

(
ci +

dT
dqi

)
− E

(
zζ̃

T′

1 − T′

(
(1 − T′)∂z∗ci +

dT′

dqi

∣∣∣∣
z

))
− αE

(
zζ̃ (1 − T′)

{
∂z∗ci +

1
1 − T′

dT′

dqi

∣∣∣∣
z

}
+ ci +

dT
dqi

)

Where the second line simply uses q · ∂z∗c = 1 and q · ∂qi c
h = 0. Therefore, we have:

E

(
ci +

dT
dqi

)
=

1
1 − α

E

(
zζ̃(T′ + α(1 − T′))

(
∂z∗ci +

1
1 − T′

dT′

dqi

∣∣∣∣
z

))

Putting everything together, we can rewrite dCj/dqi using the definition of ∂T̃′/∂qi:

dCj

dqi
−

∂Ch
j

∂qi
= −E

(
zζ̃

1
1 − T′

∂T̃′

∂qi
(1 − T′)

(
∂z∗cj − E(∂z∗cj) +

1
zζ̃ f (z)

Ez′>z
(
∂z∗cj − E(∂z∗cj)

)))
− E(∂z∗cj)E

(
zζ̃

1
1 − T′

∂T̃′

∂qi

(
1 − T′ +

T′ + α(1 − T′)

1 − α

))
= −E

(
zζ̃

1
1 − T′

∂T̃′

∂qi
(1 − T′)

(
∂z∗cj − E(∂z∗cj) +

1
zζ̃ f (z)

Ez′>z
(
∂z∗cj − E(∂z∗cj)

)))
− 1

1 − α
E(∂z∗cj)E

(
zζ̃

1
1 − T′

∂T̃′

∂qi

)
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Finally, using the definition of ∂qj T̃
′ we have:

dCj

dqi
= − 1

1 − α
E

(
ζ̃

ζ

∂qi T̃
1 − T′

∂qj T̃
1 − T′ zζ̃

)
+

∂Ch
j

∂qi

Using the definition of the real wedge qi
1−T′

∂T̃′
∂qi

∣∣∣
z

:= ∂z∗ ei +
qi

1−T′
∂T′
∂qi

∣∣∣
z

and of τnh
i we obtain the formula

of proposition 6.

Proof of Proposition 7 and Lemma 2. To distinguish endogenous and exogenous changes in prices, we
denote dp∗i the exogenous change in pi. Since we have already determined the impact of consumer prices
on taxation, we first need to determine the effect of the endogenous change in α. Going back to the FOC
associated with V we have:

f (z)zζ̃
∂

∂α

{
T′

1 − T′

}
+ f (z)zζ̃ =−

∫
z′>z

(
1 − (1 − α)

λ(θ)

E(λ(θ))

{
1
λ

∂λ

∂α

})
f (z)dz

=−
∫

θ′>θ

(
1 − λ(θ)

E(λ(θ))

)
π(θ)dθ

Where the second line directly use the definition of λ to derive 1/λ∂αλ = 1/(1 − α). So we directly have:

∂

∂α

{
T′

1 − T′

}
= − 1

(1 − α)(1 − T′)

We therefore have (where all derivatives are taken at fixed θ):

d
dp∗i

{
T′

1 − T′

}
= ∑

j

d
dqj

{
T′

1 − T′

} dqj

dp∗i
+

d
dα

{
T′

1 − T′

}
dα

dp∗i

To conclude we need dqj/dp∗i and dα/dp∗i .

First, we derive the response of aggregate consumption to a change in α holding all consumer prices
fixed. We have:

1
1 − T′

∂T′

∂α

∣∣∣∣
z
=

1
1 − T′

∂T′

∂α

∣∣∣∣
z
=

ζ

ζ̃

1
1 − T′

∂T′

∂α

∣∣∣∣
θ

= − ζ

ζ̃

1
1 − α

As before, the response of consumption can be expressed in terms of dT̃:

∂Ci
∂α

= −E

(
∂z∗cizζ̃

∂T
∂α

)
− E

(
∂z∗ci

∂T
∂α

)
= −E

(
∂z∗ci zζ̃

∂T
∂α

)
−
∫ (

∂T′

∂α
Ez′>z(∂z∗ci − E(∂z∗ci)

)
dz − E(∂z∗ci)E

(
∂T
∂α

)
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Using again the government budget constraint gives:

E

(
∂T
∂α

)
− E

(
zζ̃

T′

1 − T′
∂T′

∂α

)
− αE

(
zζ̃

∂T′

∂α
+

∂T
∂α

)
= 0

⇒ E

(
∂T
∂α

)
=

1
1 − α

E

(
zζ̃

(
T′

1 − T′ + α

)
∂T′

∂α

)
So the response of aggregate consumption is given by:

∂Ci
∂α

= − 1
1 − α

E

(
zζ̃

ζ̃

ζ

1
1 − T′

∂T̃′

∂qi

1
1 − T′

∂T′

∂α

)
=

1
(1 − α)2 E

(
zζ̃

1 − T′
∂T̃′

∂qi

)
Finally, the exogenous change in pi, keeping α and the consumer prices fixed only has an effect on con-
sumption through the change in the intercept of the tax schedule (keeping government budget constant). It
is simply given by dT0 = 1/(1 − α)Cidp∗i so we have:

∂Cj

∂p∗i
= − 1

1 − α
E(∂z∗cj)Ci

Now we determine the changes in α and q. We use the specification of the proposition, with a constant
and diagonal matrix ∆α. We start with consumer prices, the equilibrium definition of qi and the supply side
relationship between pi and Ci give:

1
qj

dqj

dp∗i
=

1
pj

dpj

dp∗i
+

1
1 − α

dα

dp∗i
and

1
pj

dpj

dp∗i
= −αj

1
Cj

dCj

dp∗i
+ 1i=j

1
pi

To determine prices, we use these 2 relationship and our expression for the response of aggregate de-
mand to qj, pi and α:

1
qj

dqj

dp∗i
= −αj

(
∑
k

qk
Cj

dCj

dqk

1
qk

dqk
dp∗i

+
1
Cj

∂Cj

∂α

dα

dp∗i
− 1

1 − α
E(∂z∗cj)

Ci
Cj

)
+

1
1 − α

dα

dp∗i
+ 1i=j

1 − αi
1 − α

1
qi

This expression can be simplified and made independent of dα, indeed, we have:

∑
k

qk
Cj

dCj

dqk
=

−1
1 − α

E

(
zζ̃

∂qj T̃
1 − T′ ∑

k

ζ̃

ζ

qk∂qk T̃
1 − T′

)

=
−1

1 − α
E

(
zζ̃

∂qj T̃
1 − T′

)
= −(1 − α)

∂Cj

∂α

Therefore, defining 1/qjdq̃j/dp∗i = 1/qjdqj/dp∗i − (1 − α)−1dα/dp∗i , we have:

1
qj

dq̃j

dp∗i
= −αj

(
∑
k

qk
Cj

dCj

dqk

1
qk

dq̃k
dp∗i

− 1
1 − α

E(∂z∗cj)
Ci
Cj

)
+ 1i=j

1 − αi
1 − α

1
qi
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So we have (abusing notations):[
1
qj

dq̃j

dp∗i

]
= (Id + ∆αC)−1

[
αj

1 − α
E(∂z∗cj)

Ci
Cj

+ 1i=j
1 − αi
1 − α

1
qi

]

Since in addition ∑j
qj∂

∂qj

{
T′

1−T′

}
= 0, we have ∑j

qj∂

∂qj

{
T′

1−T′

}
1
qj

dq̃j
dp∗i

= ∑j
qj∂

∂qj

{
T′

1−T′

}
1
qj

dqj
dp∗i

. Redefining the

endogenous change in consumer prices , 1/qjdqe
j /dp∗i = 1/qjdq̃j/dp∗i − 1i=j

1−αi
1−α

1
qi

gives the set of prices
defined in Proposition 7.

To conclude, we derive the response of α in terms of dqe
j /dp∗i . By definition we have:

α =
∑ αi piCi

∑ piCi

Therefore:

dα

dp∗i
=

∑j(αj − α)pjCj

(
1
pj

dpj
dp∗i

+ 1
Cj

dCj
dp∗i

)
∑j pjCj

Using the definition of dqe
j /dp∗i , we have:

1
qj

dqe
j

dp∗i
=

1
pj

dpj

dp∗i
− 1i=j

1
pi

= −αi
1
Cj

dCj

dp∗i

Therefore:

dα

dp∗i
=

∑j(αj − α)(1 − 1
αj
)pjCj

1
qj

dqe
j

dp∗i
∑j pjCj

+
Ci(αi − α)

∑j pjCj

1
1 − α

dα

dp∗i
=

∑j qjCj(
α
αj
− 1) 1

qj

dqe
j

dp∗i
∑j qjCj

+
αi − α

1 − α

Ci

∑j qjCj

This proves the first part of Proposition 7. To express the response of the tax rate at z, we simply use
Lemma 1:

ζ̃

ζ

qi
1 − T′

∂T′

∂qi

∣∣∣∣
z
=

zζ̃T′′

1 − T′

(
∂z∗ ei

1 − αi
1 − α

+ ∑
j

∂z∗ ei
dqe

j

dp∗i
+

1
1 − α

dα

dp∗i

)
+

qi
1 − T′

∂T′

∂qi

∣∣∣∣
θ

The proof of Lemma 2 follows exactly the same steps.

Finally, we consider the general case where pi = ϕi(C1, ..., Cn). Denoting the exogenous change in
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pi, dp∗i , we have:

dpj

dp∗i
= 1(i = j)− pj ∑ Ajk

1
Ck

dCk
dp∗i

and the change in aggregate demand for goods is given as before by:

1
Cj

dCj

dp∗i
= ∑

k

qk
Cj

dCj

dqk

1
qk

dqk
dp∗i

+
∂Cj

∂α

dα

dp∗i
− 1

1 − α
E(∂z∗cj)

Ci
Cj

with dCj/dqk and ∂Cj/∂α defined as before. The equilibrium consumer prices are determined by:

qi =
pi

1 − α

(
1 + ∑

j

∂Qi ϕjCi

ϕj

pjCj

piCi

)

Since
∂Qi

ϕjCi
ϕj

only depends on C1, ..., Cn, we have:

dqj

dp∗i
=

1
1 − α

dα

dp∗i
qj +

1
pj

dpj

dp∗i
qj

−
pj

1 − α

(
∑
k

Akj
pkCk
pjCj

(
1
pk

dpk
dp∗i

+
1

Ck

dCk
dp∗i

− 1
pj

dpj

dp∗i
+

1
Cj

dCj

dp∗i

)
+ ∑

k
Akj

pkCk
pjCj

∑
l

al
kj

1
Cl

dCl
dp∗i

)

with al
kj = Ql∂Ql Akj/Akj is the elasticity of the price elasticity of product k with respect to market size j. As

before, defining 1/qjdq̃j/dp∗i = 1/qjdqj/dp∗i − (1 − α)−1dα/dp∗i , we have:

1
Cj

dCj

dp∗i
= ∑

k

qk
Cj

dCj

dqk

1
qk

dq̃k
dp∗i

− 1
1 − α

E(∂z∗cj)
Ci
Cj

1
qj

dq̃j

dp∗i
− 1

pj

dpj

dp∗i
= −

pj/qj

1 − α

(
∑
k

Akj
pkCk
pjCj

(
1
pk

dpk
dp∗i

+
1

Ck

dCk
dp∗i

− 1
pj

dpj

dp∗i
+

1
Cj

dCj

dp∗i

)

+∑
k

Akj
pkCk
pjCj

∑
l

al
kj

1
Cl

dCl
dp∗i

)

Therefore, denoting Ã0 and Ã1 the matrix with entry Ã0
ij = ((1− α)(1+ ti))

−1(Aji
pjCj
piCi

− 1(i = j)∑k Aki
pkCk
piCi

)

and Ã1
ij = ((1 − α)(1 + ti))

−1 ∑k Aki
pkCk
piCi

aj
ki), we have:

[
1
p

dp
dp∗i

]
= 1(i = j)(1 + ti)

1
qi

− AC
[

1
q

dq̃
dp∗i

]
+

1
1 − α

A
[

E(∂z∗c)
C
Ci

]
And the consumer price changes are given by:[

1
q

dq̃
dp∗i

]
= (Id + ÃC)−1

(
(Id + Ã0)

[
1(i = j)(1 + ti)

1
qi

]
+

1
1 − α

Ã
[

E(∂z∗c)
C
Ci

])
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With Ã = A + Ã0(Id − A) + Ã1. The change in tax is given by:

d
dp∗i

{
T′

1 − T′

}
= ∑

j

d
dqj

{
T′

1 − T′

} dq̃j

dp∗i
+

d
dα

{
T′

1 − T′

}
dα

dp∗i

with

dα

dp∗i
=

∑j(∑k Ajk − α)pjCj(dln(pj)/dp∗i + dln((Cj)/dp∗i )

∑ pjCj
+

∑j(∑k Ajk ∑l(al
jk)dln((Cl)/dp∗i )pjCj

∑ pjCj

Proof of Corollary 1. The proof of (1) in Corollary 1 follows exactly the Proof of Proposition 4 and 5. To
derive aggregate consumption, we follow Proposition 6, we have:

dCj

dqi
= −E

(
∂z∗cj

(
zζ̃

{
(1 − T′)∂z∗ci +

dT′

dqi

∣∣∣∣
z

}
+ ci +

dT
dqi

))
+

∂Ch
j

∂qi

and

E

(
∂z∗cj

(
ci +

dT
dqi

))
= E

((
∂z∗cj − E(∂z∗cj)

) (
ci +

dT
dqi

))
+ E(∂z∗cj)E

(
ci +

dT
dqi

)
=
∫ (

(1 − T′)∂z∗ci +
dT′

dqi

∣∣∣∣
z

)
Ez̃>z

(
∂z∗cj − E(∂z∗cj)

)
dz + E(∂z∗cj)E

(
ci +

dT
dqi

)

Next to express the second term in the equation above in terms of dT′ we use the feasibility constraint:

0 = ∑
j

∂Qj χ
dCj

dqi
+ E

(
zζ̃

(
1

1 − T′
dT′

dqi
+ ∂z∗ci

))

= −E

(
zζ̃

(
(1 − T′)∂z∗ci +

dT′

dqi

)
+ ci +

dT
dqi

)
+ E

(
zζ̃

(
1

1 − T′
dT′

dqi
+ ∂z∗ci

))
⇒ E

(
ci +

dT
dqi

)
= −E

(
zζ̃T′

(
1

1 − T′
dT′

dqi
+ ∂z∗ci

))

Therefore as before, we have:

dCj

dqi
= −E

(
ζ̃

ζ

∂qi T̃
1 − T′

∂qj T̃
1 − T′ zζ̃

)
+

∂Ch
j

∂qi

The response of aggregate consumption to a change in total cost is defined by the change in the tax
schedule intercept:

dχ

dp∗i
+ ∑

j
∂Qj χ E(∂z∗cj

dT0

dp∗i
) = 0

⇒
∂Cj

∂χ
= −E(∂z∗cj)

dχ

dp∗i
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To determine equilibrium prices, we then simply use:[
1
qj

dqj

dp∗i

]
= AC

[
1
qj

dqj

dp∗i

]
− A

[
E(∂z∗cj)

Cj

dχ

dp∗i

]
− [0..1/qi..0]′

Which gives the prices in the main text.

A.3 Extensions

As a preliminary, we introduce a tool that we use extensively in this section: the tax rate derivative with
respect to exogenous consumer price changes. Exogenous consumer price changes are abstract objects that
can be interpreted as decisions, from the social planner, to arbitrarily increase or decrease the tax on good i
while keeping all other commodity taxes fixed.

Lemma 2. Consider an economy without spillovers (pi = ϕi(Ci)). The response of the optimal tax rate to an exoge-
nous increase in the consumer price of i, that we denote dq∗i is:

d
dq∗i

{
T′

1 − T′

}
θ

=
∂

∂qi

{
T′

1 − T′

}
θ

+ ∑
j

qj∂

∂qj

{
T′

1 − T′

}
θ

1
qj

dqe
j

dq∗i
− 1

(1 − α)(1 − T′)

dα

dq∗i

Where the endogenous price response 1/qjdqe
j /dq∗i solves:

[
1
qi

dqe
j

dq∗i
+ 1i=j

1
qi

]
= (Id + ∆αC)−1

[
1
qi

]

and the endogenous response to the average market size effect dα/dq∗i is given by:

1
1 − α

dα

dq∗i
=

∑ qjCj(
α
αi
− 1) 1

qj

dqj
dq∗i

∑ qjCj

The tax response at z, is given by:

ζ̃

ζ

qi
1 − T′

dT′

dq∗i

∣∣∣∣
z
=

zζ̃T′′

1 − T′

(
∂z∗ ei + ∑ ∂z∗ ej

dqj

dq∗i

)
+

qi
1 − T′

dT′

dq∗i

∣∣∣∣
θ

The tax rate responses to consumer price changes are essentially the same as the response to producer
price changes. The main difference is that they do not generate amplification through their impact on gov-
ernment revenue.

Market Size Effects and Redistribution With the theoretical tools developed in section 4, we can now
reexamine the impact of of market size effects on the tax schedule. To streamline exposition, we consider an
economy where the price elasticity with respect to market size is constant across sectors (αi = α).1

1For example, changes in the price elasticity with respect to market size could stem from technology shocks (e.g. with the rise of IT
and intangible capital, as in ?, ?, and ?), from competition policy (e.g., ?), or from trade policy (e.g., ?).
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Proposition A.1. Consider an economy with constant αi across markets. The tax rate response to an increase in the
average market size elasticity α is:

dT′

dα

∣∣∣∣
θ

= −1 − T′

1 − α
+ ∑

dT′

dq∗i

∣∣∣∣
θ

dq0
i

dα
(1)

where dT′/dq∗i is defined in Lemma 2 and the initial price reactions dq0
i /dα are given by:

dq0
i

dα
= − αζ

(1 − α)2

(
1 +

1
si

Ez

(
∂z∗Ei − si + qiτ

nh
i

))

As discussed in section 3, a naive interpretation of the optimal tax formula of Proposition 3 is that the
correction is simply a wage subsidy applied to the optimal tax rate at fixed prices. If this were the case, the
tax rate at α > 0 would be 1 − T′ = (1 − T′

f p)/(1 − α), where T′
f p is the tax rate at fixed prices (α = 0),

i.e. the social planner uniformly subsidize nominal net-of-tax wages 1 − T′ by 1/(1 − α). The derivative
of the of the tax rate at θ with respect to α would then be given by dT′/dα = −(1 − T′)/(1 − α), which is
exactly the first term in equation 1. Keeping endogenous variables fixed (in particular the pareto weights
g), the mechanical effect of an in increase in α is to increase the wage subsidy 1/(1 − α). However, this
interpretation is incomplete: implementing the subsidy shifts consumption and leads to price changes in
general equilibrium. The advantage of our comparative statics approach is to make these effects explicit.

The non-trivial interaction between the corrective tax −(1 − T′)/(1 − α) and redistributive operates
through prices. First, implementing the corrective tax modifies agents’ disposable income, shifts consump-
tion and, through market size effects, has a direct impact on prices, given by dq0

i /dα in Proposition A.1.
Second, this direct price effect leads to a new tax change, which further shifts consumption through income
and substitution effects, creating new price changes, and so on. This indirect effect is summarized by the
derivative of the tax rate with respect to consumer prices, which we derived in Lemma 2. Since we already
know how the optimal tax rate responds to changes in consumer prices, we only need to determine the
direct effect of α on prices to obtain the full response of the tax rate to a change in the market size elasticity
of prices.

Since we have discussed the indirect effect in detail in subsection 4.2, we focus here on the direct effect
of α on prices. Decreasing the tax rate at z by (1 − T′)/(1 − α) mechanically increases post-tax income at
z′ > z by (z′ − z)× (1− T′)/(1− α) and, through labor supply, increases income at z by zζ̃(1− T′)/(1− α).
The lower taxes reduces government revenue: the intercept of the tax schedule is higher and the post-tax
income of households below z is lower. Thus, aggregate income rises and the impact of the corrective tax is
regressive: it increases disposable income at the top of the distribution and makes households at the bottom
poorer. The initial price change dq0 captures both effects. As aggregate income increases the price of all
goods decreases by −αζ/(1− α)2. However, as households earns more and that the tax rates becomes more
regressive, income increases more at the top than at the bottom of the distribution: the share of luxuries
increases in the economy (Ez

(
∂z∗Ei − si + qiτ

nh
i

)
> 0 for luxuries, assuming ∂z∗Ei > si – which is the case

when the aggregate share of luxuries does not decrease with aggregate income) while the share of necessi-
ties declines. Through this reallocation of income from luxuries to necessities, the relative price of luxuries
decreases.

When producer prices become more sensitive to demand, the tax schedule therefore becomes more re-
gressive. First, a higher α calls for a larger wage subsidy, second this larger wage subsidy induces a shift of
demand away from necessities and towards luxuries through income effects. As a result the relative price
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of luxuries decreases and it becomes more valuable to redistribute income to higher ability households.
Through the general equilibrium effects discussed in section 4.2, the increase in the relative price of luxuries
is then amplified which leads to more redistribution towards higher income households. The corrective tax
therefore directly affects the value of redistribution in a non trivial way through prices: the tax schedule
becomes more progressive when prices are less sensitive to demand and more regressive when they are
more sensitive.

The lessons for optimal tax design are more general. Corrective policies are often considered indepen-
dently from redistributive ones, as they can be compensated for. In partial equilibrium, a tax on sin goods
or polluting goods can be compensated for (when preferences are separable between consumption and la-
bor) and therefore do not affect redistribution. We show that this is no longer true if prices endogenously
respond to corrective policies: as prices directly impact the value of redistribution, even when the direct
impact of corrective policies is compensated for, they would alter optimal redistributive policies through
their effect on prices.

In the homothetic case, the price effects are nil. Indeed, as discussed in the previous section, we have
dT′/dq∗i = 0: there is no interaction between the corrective tax and redistribution. While this is true when
considering the tax rate at a given percentile of the income distribution, we find that the tax schedule as a
function of income responds in a non-trivial way to the change in the average market size elasticity α:

dT′

dα

∣∣∣∣
z
= T′′zζ

(
∂z∗ci ·

dqi
dα

− 1
1 − α

)
− 1 − T′

1 − α

In this wave equation, the tax rate at α is such that 1 − T′
α(z) = (1 − T′

f p(a(α)z))/(1 − α), where a(α) is a
constant independent of z, and T′

f p is the tax rate at fixed prices (α = 0). Thus, the tax schedule is adjusted
to correct for changes in labor supply.

Proof of Proposition A1. We denote by dα∗ the exogenous change in elasticity across markets. Since the
change in elasticity is common and that we initially have αi = α for all i, then the total change in elasticity
is dα = dα∗. Then using the derivation of Proposition 7, we have:

dT′

dα∗

∣∣∣∣
θ

= ∑
j

∂T′

∂qj

∣∣∣∣∣
θ

dqj

dα∗
− 1 − T′

1 − α

Next we have:

1
qj

dqj

dα∗
= −α

(
∑
k

qk
Cj

dCj

dqk

1
qk

dqk
dα∗

+
1
Cj

∂Cj

∂α

)

Therefore, we have: [
1
qj

dqj

dα∗

]
= (Id + αC)−1

[
1
qj

dq0
j

dα∗

]

With Cjdq0
j /dα∗ = −α/(1 − α)2E(zζ̃qj∂qj T̃

′/1 − T′). Using the definition of Corollary 3 then gives the
expression of the main text.
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Inequality and Prices We examine how exogenous shifts in the distribution of income alter the design of
optimal taxes. This allows us to evaluate the direct impact of income inequality on redistribution policies
and its indirect impact, through prices. We continue to assume a linear social welfare function.2

For a given distribution of income f , we consider a small deviation f + ϵ f̃ . We denote the Gateaux
derivative of a function F of f in the direction f̃ as dF[ f̃ , f ].

Proposition A.2. Consider an economy with constant αi across markets. The partial equilibrium response of the tax
rate at θ to a change f̃ in the income distribution is:

d
{

T′

1 − T′

}
PE

[ f̃ , f ] =
1 − α

zζ̃ f (z(θ))
E

(
f̃
f
− g

(
f̃
f
− Eg

(
f̃
f

)))
︸ ︷︷ ︸

Change In the Value of Redistribution

− f̃
f

(
T′

1 − T′ + α

)
︸ ︷︷ ︸

Change in the Efficiency Cost of Taxation

(2)

The general equilibrium response is given by:

dT′
GE[ f̃ , f ] = dT′

PE[ f̃ , f ] + ∑
dT′

dq∗i

∣∣∣∣
θ

dq0
i [ f̃ , f ] (3)

where dq0
i [ f̃ , f ] is the direct effect of f̃ and dT′

PE[ f̃ , f ] on prices and is given by:

Cidq0
i [ f̃ , f ] =

α

(1 − α)

(
E

(
qi∂qi T̃

′

1 − T′ zζ̃
dT′

PE[ f̃ , f ]
1 − T′

)
− E(∂z∗ ei)E

(
f̃
f
((1 − α)T + αz)

))
− αE

(
f̃
f

ei

)

Proposition A.2 shows that a change in the distribution of income has two effects on the tax rate in partial
equilibrium. First, it affects the value of redistribution. For example, the value of redistribution increases
everywhere in response to a spread of the income distribution that keeps the cost of public fund constant
(Eg( f̃ / f ) = 0), where the bottom and the top are thicker while the middle of the distribution is thinner.
When income at the bottom of the distribution is stagnant and increases at an increasing rate with higher
income, the value of redistribution will increase at the bottom and at the top. Indeed, the marginal cost of
public funds decreases (Eg( f̃ / f ) < 0), so it is more valuable to tax at the bottom, and a larger tax rate near
the top collects more income to redistribute to lower income households. Second, distributional changes
affects the cost of taxation. When f̃ is positive, the mass at z(θ) increases and a larger tax rate creates a
larger reduction in labor supply.

Although the two effects can work in opposite direction, so that the impact of a change in the income
distribution may be ambiguous, we derive a simpler formula for the top and bottom tax rate when f̃ / f is
bounded:

d
{

T′

1 − T′

}
PE

[ f̃ , f ] = Eg( f̃ / f )
g

1 − g

(
T′

1 − T′ + α

)
The tax response at the top and bottom only depends on the cost of public funds Eg( f̃ / f ). If the cost does
not change, the tax rate remains the same at the tails. For a spread in the income distribution (with Eg( f̃ /
f ) = 0), the tax rate increases in the middle of the distribution (since the value of redistribution increases
and the cost decreases). Indeed, as the cost of taxation decreases in the middle of the distribution and in-

2The tax rate can be corrected exactly as in the previous subsection when social preferences are non linear.
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creases at the top, it becomes more efficient to increase the tax rate in the middle to redistribute to poorer
households.

As in Proposition A.1, the general equilibrium effects of the change in distribution works through prices.
A shift in income inequality has a direct effect on prices summarized by dq0[ f̃ , f ], which will then be ampli-
fied through income and substitution effects and further changes in taxes. The direct effect, dq0[ f̃ , f ] is the
sum of three terms. The first term captures the change in income due to the partial equilibrium adjustment
in taxes dT′

PE[ f̃ , f ]. As discussed in Proposition A.1, since dT′
PE[ f̃ , f ] is positive, the share of luxury goods

decrease relatively more than the share of necessity goods. This first effect is less important quantitatively
than the second and especially the third term of dq0[ f̃ , f ]. The second term captures the increase in tax rev-
enue (as there are more higher income households, tax receipts are larger) and its effect on consumption. The
additional revenue is distributed lump sum and all prices decrease proportionally to the aggregate marginal
propensity to spend across goods. The last and most important term is the direct effect of the spread in the
income distribution on aggregate demand for goods. A spread in the income distribution increases the mass
of households at the tails. This mechanically affects aggregate demand for goods and, since households at
the top hold a larger share of aggregate income, demand for luxury goods increases relatively more.

Therefore, the price of luxury goods decreases relatively more and the overall price effect mutes the
incentive to redistribute to lower-income households. The magnitude of the price effect depends on the
degree of heterogeneity in consumption and, implicitly, on preferences for redistribution: the order of mag-
nitude of the price derivative of the tax rate is (1 − T′)2.3 This is also the order of magnitude of the tax rate
derivative with respect to the distribution. Thus, the direct impact of inequality on redistributive policies
and its indirect impact through prices are of the same order, and it is not meaningful to consider one without
the other.4.

Proof of Proposition A2. First note that for a given tax schedule, we have that for any distribution of ability
π(θ) the associated distribution of income is given by f (z(θ)) = π(θ)/z′(θ) where z′(θ) is independent of
π(θ) and we have dπ[ f̃ , f ](θ) = z′(θ) f̃ (z(θ)). Given that ∂θ ln(MRS) is independent of the tax system in the
additively separable/isoelastic case, we then have at constant qi:

zζ̃ f (z)d
{

T′

1 − T′

}
[ f̃ , f ](θ) + ∂θ ln(MRS)dπ[ f̃ , f ](θ)

(
T′

1 − T′ + α

)
= (1 − α)

∫
θ′>θ

dπ[ f̃ , f ](θ)− g
(

dπ[ f̃ , f ](θ)−
∫

gdπ[ f̃ , f ](θ)dθ

)
dθ

Plugging dπ[ f̃ , f ](θ) = z′(θ) f̃ (z(θ)) and changing variable in the integral then gives the formula of the
change in tax rate in partial equilibrium.

The change in aggregate consumption is given by:

dCj[ f̃ , f ] = ∑
k

dCj

dqk
dqk[ f̃ , f ]− E

(
∂z∗cj

(
zζ̃dT′[ f̃ , f ](z) + dT[ f̃ , f ](z)

))
+
∫

ci f̃ dz

3Moreover the direct change in consumption generates a price change dqi = −αE
(

f̃ / f ei
)
, which is of the same order as the change

in distribution.
4We illustrate this point quantitatively in subsection 5.2.
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where the last term is the mechanical change in Cj due to the shift in f and dT′
PE[ f̃ , f ](z) = ζ/ζ̃dT′

PE[ f̃ , f ](θ).
The impact, at fixed consumer prices, of the shift in distribution on government budget constraint is given
by:

∫
(1 − α)T + αz f̃ dz + (1 − α)E

(
dT[ f̃ , f ](z)

)
− E

(
zζ̃

(
T′

1 − T′ + α

)
dT′[ f̃ , f ](z)

)
= 0

Using the same steps as in proposition 7 then gives the formula of the main text.

Comparative Statics with a Non-Linear Social Welfare Function Next, we allow the social welfare func-
tion to be non-linear. We continue to assume that agents’ utility is separable in consumption and labor, that
there is no income effect on labor supply at initial prices, and that the market size elasticities are constant
and equal to α across markets. As before, g are the pareto weights (i.e., g = G′(v)vz∗/λ with v the indirect
utility of the agent and λ the social cost of public funds), and g′ denote their derivatives with respect to
disposable income. We denote by dT̂′/dp∗i = dT′/dp∗i |z + c · dq/dp∗i the response to price changes of the
real wedge with a non-linear social welfare function; it is distinct from the linear case, which we denote by
dT̃′

ℓ/dp∗i .

Proposition A.3. Consider an economy with constant αi across markets. The response of the real wedge at z to an
exogenous increase in the producer price of i is given by:

dT̂′

dp∗i

∣∣∣∣
z
=

dT̃′
ℓ

dp∗i

∣∣∣∣∣
z︸ ︷︷ ︸

Price Effect
Linear Pareto Weights

+

Non Linear Correction︷ ︸︸ ︷
dT̂′

g

dp∗i

∣∣∣∣∣
z︸ ︷︷ ︸

Change in Pareto Weights

+ ∑
dT̃′

ℓ

dq∗j

∣∣∣∣∣
z

dq̂0
j

dp∗i︸ ︷︷ ︸
Price Correction

where dT̃′
ℓ/dp∗i is defined in Proposition 7 and dT̂′

g/dp∗i captures the change in the tax rate induced by change in the
non linear pareto weights:

ζ̃

ζ

zζ̃ f (z)
(1 − T′)2

dT̂′
g

dp∗i

∣∣∣∣∣
z

= (1 − α)E
g
z′>z

(
g′

g
dT̂
dp∗i

− Eg
(

g′

g
dT̂
dp∗i

))
(4)

dT̂′
g/dp∗i induces a direct change in prices dq̂0

i /dp∗i given by:

Ci
dq̂0

i
dp∗i

=
α

1 − α
E

(
zζ̃

qi∂qi T̃
′
ℓ

1 − T′
ζ̃/ζ

1 − T′
dT̂′

g

dp∗i

∣∣∣∣∣
z

)
(5)

Finally, dT̂/dp∗i (zmin) is determined by the budget constraint:

(1 − α)E

(
dT̂
dp∗i

)
= E

(
zζ̃

(
T′

1 − T′ + α

)
dT̂′

dp∗i

)
+ Ci (6)

Similarly, the tax rate derivative with respect to the market size elasticity α is:

dT̂′

dα

∣∣∣∣
z
=

dT̃′
ℓ

dα

∣∣∣∣∣
z

+
dT̂′

g

dα

∣∣∣∣∣
z

+ ∑
dT̃′

ℓ

dq∗j

∣∣∣∣∣
z

dq̂0
j

dα
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where dT̂′
g/dα and dq̂0

j /dα are defined as in equations 4, 5.

In Proposition A.3, the response of optimal tax rates to prices and market size elasticity is given implicitly
as the solution to an integro-differential equation, which can be solved efficiently by iterations. The iterative
procedure conveys the intuition for the non-linear tax correction. For example, consider an increase in the
price of necessity goods. As seen in Proposition 7, with linear pareto weights, the tax schedule becomes
more regressive: the tax burden increases at the bottom of the distribution, and decreases at the top. When
the social welfare function is concave, this means that the value of a dollar transfer increases at the bottom
and decreases at the top: there is an incentive for the social planner to partially compensate lower-income
households for their higher burden.

In general, if the change in tax and price burden dT̂/dp∗i is decreasing and if the coefficient of inequality
aversion g′/g is increasing, then dT̂′

g/dp∗i is positive: the planner levies funds to reduce the income loss at
the bottom of the distribution. This change in taxes leads to an increase in the consumption of necessity
goods, which lowers their prices. This direct effect on prices is captured by dq̂0/dp∗i . As in Lemma 2, the
change in prices generates a further change in tax rates and prices through income and substitution effects.

Overall, the non-linearities dampen both the regressive change in the tax schedule and the price increases
for necessities induced by general equilibrium effects. These channels may be difficult to see directly in
Proposition A.3, since both prices and taxes are a fixed point of the equation. However, when the derivatives
of the pareto weights are small, the term dT̂′

g/dp∗i is well approximated by:

ζ̃

ζ

zζ̃ f (z)
(1 − T′)2

dT̂′
g

dp∗i
= (1 − α)E

g
z′>z

(
g′

g
dT̃ℓ

dp∗i
− Eg

(
g′

g
dT̃ℓ

dp∗i

))
In words, the planner corrects for the increase in tax burden due to the regressive tax change (and price
changes) of Proposition 7: the next round change in tax burden induced by the correction is of second
order. This formula is useful to characterize the first-order impact of the tax correction. If the tax schedule
of Proposition 7 is regressive (progressive), the correction makes it more (less) progressive provided that
g′/g is increasing.

When the derivatives of the pareto weights are larger, then the changes in tax burden induced by
the correction become first order and more iteration are needed. However, regardless of the number of
iterations, the correction will generally not overturn the regressivity (or progressivity) of the tax response
derived in Proposition ??. If the price changes impose a larger burden at the bottom of the distribution with
a linear social welfare function, the non-linear correction will merely dampen this increase. We formalize
these statements in the following corollary, making additional assumptions to obtain unequivocal results:

Proposition A.4. Suppose that α = 0, that the exogenous price changes dp∗ are such that C · dp∗ = 0 (average
inflation is zero) and that ζ̃/ζ zζ̃ f ((z)/(1 − T′)2 dT̃′

ℓ/dp∗ is negative and inverse U-shaped (implying that the price
changes benefit higher-income households5). Then:

• If g′(z)/g(z) is constant and negative, there exists an income level z0 such that dT̂/dp∗ > 0 if z < z0 and
dT̂/dp∗ < 0 if z > z0

5Indeed we have 1/(1 − T′)dT̃′
ℓ/dp∗ = ∑i(∂z∗ Ei − si + Ez(piτ

nh
i ))dp∗i /pi which is negative if the price of luxuries decreases while

the price of necessities decreases
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• If g′(z)/g(z) is increasing and negative, there exists an income level z0 such that dT̂/dp∗ > 0 if z < z0 and
E

g
z>z0

(dT̂/dp∗) < 0.

In both cases we have dT̂′/dp∗ ≥ dT̃′
ℓ/dp∗. The opposite is true when ζ̃/ζ zζ̃ f ((z)/(1 − T′)2 dT̃′

ℓ/dp∗i is positive
and U-shaped.

Let us briefly discuss the assumptions of the corollary. First, imposing α = 0 allows us to ignore the en-
dogenous response of prices, which depends on substitution patterns across products.6 Second, to capture
a price change that benefits higher-income households, we assume that ζ̃/ζ zζ̃ f ((z)/(1 − T′)2 dT̃′

ℓ/dp∗i is
negative, imposing in addition that it is inverse U-shaped is mild technical assumption.7 Finally, assuming
that average inflation is zero allows us to focus on price dispersion rather than changes in aggregate real
income.8

Although it is feasible to fully compensate agents for the price changes when average inflation is zero
(as shown by Equation 6, with dT̂/dp∗ = 0), Proposition A.4 states that it is not optimal to do so. When
the price change benefits higher-income households, we have dT̂/dp∗ > 0 at lower income levels, so the
welfare of lower-income households decreases at the optimum. This is true even if welfare losses at the
bottom of the distribution are socially more costly, which is the case when g′/g increases, which covers, in
particular, CRRA social welfare functions. In the next subsection, we discuss how these results extend to
non-isoelastic disutilities of labor supply.

When preferences for consumption are homothetic and the social welfare function is linear, we have
seen that the impact of prices and the market size elaticity α on taxes rate is rather limited. This is not the
case when the social welfare function is non linear. Indeed, we have shown that when markets become
more elastic, the planner imposes a corrective tax and the tax rate at a given percentile of the distribution
decreases by −(1 − T′)/(1 − α): there is no interaction between the corrective tax and the redistribution
motive. But imposing the corrective tax reduces government revenue and increases the tax burden at the
bottom of the distribution. With non linear social preferences, this increases the value of a dollar transfer
at the bottom. The tax rate is adjusted accordingly and decreases by less than −(1 − T′)/(1 − α). There
is therefore a non trivial interaction between corrective and redistributive taxation. Similarly, even if price
changes do not affect directly the tax rate in the homothetic case, they indirectly have an impact through the
non-linear correction.

6In some simple cases, for example when there only a luxury good and a necessity good that are substitutes, the result can be
generalized with α ̸= 0. In general, as long as the total price change – incorporating endogenous responses – benefits higher income
households, the result remains true.

7Indeed, when the prices of luxury goods decrease, the real wedge decreases with a linear social welfare function. Assuming that
ζ̃/ζ zζ̃ f ((z)/(1 − T′)2 dT̃′

ℓ/dp∗i is inverse U-shaped is not very restrictive because (i) the term ζ̃/ζ /(1 − T′) dT̃′
ℓ/dp∗i is decreasing at

the bottom of the distribution, and increasing a higher income levels; (ii) empirically, we observe that z f (z)ζ̃/(1 − T′) is U-shaped.
Finally, the fact that ζ̃/ζ zζ̃ f ((z)/(1 − T′)2 dT̃′

ℓ/dp∗i is inverse U-shaped is verified in our empirical analysis.
8When average inflation is instead positive, the planner would need to levy more funds and the tax burden would increase even

more at the bottom of the distribution. When g′/g is constant, we can in addition show that when inflation is not zero, the additional
fund is simply levied via a lump sum tax.
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Proof of Proposition A3. With a non-linear social welfare function, we have that the derivative of the
pareto weights g is given by:

dg
dp∗i

=
d

dp∗i

{
G′(V)vz∗

E(G′(V)vz∗)

}
=−

(
g′
(

dT
dp∗i

+ c · dq
dp∗i

)
− gE

(
g′
(

dT
dp∗i

+ c · dq
dp∗i

)))
− g

(
∂z∗c · dq

dp∗i
− E

(
g∂z∗c · dq

dp∗i

))
Where the first line simply uses Roy’s identity and g′ = G′′(V)/E(G′(V)) (recall that vz∗ is a constant at
initial prices. Denoting with the subscript ℓ the tax derivative with respect to price in the linear case –
defined in Proposition 5 and 7, we have:

dT′

dp∗i

∣∣∣∣
z
= ∑

j

∂T′
ℓ

∂qj

∣∣∣∣∣
z

dqj

dp∗i
+

ζ

ζ̃

(1 − T′)2

zζ̃ f (z)
(1 − α)E

g
z′>z

(
g′

g

(
dT
dp∗i

+ c · dq
dp∗i

)
− Eg

(
g′

g

(
dT
dp∗i

+ c · dq
dp∗i

)))

Defining dT̂′/dp∗i = dT′/dp∗i + ∂z∗c · dq/dp∗i the change in real wedge, we have:

dT̂′

dp∗i

∣∣∣∣
z
= ∑

j

∂T̃′
ℓ

∂qj

∣∣∣∣∣
z

dqj

dp∗i
+

ζ

ζ̃

(1 − T′)2

zζ̃ f (z)
(1 − α)E

g
z′>z

g′

g

(
dT̂
dp∗i

− Eg
(

g′

g
dT̂
dp∗i

))

= ∑
j

∂T̃′
ℓ

∂qj

∣∣∣∣∣
z

dqj

dp∗i
+

dT′
g

dp∗i

∣∣∣∣∣
z

Where the second line defines dT′
g/dp∗i as a function of dT̂′/dp∗i

Next, the response of consumption to the joint change in price and taxes is:

dCj

dp∗i
= ∑

k

dCj

dqk

dqk
dp∗i

− 1
1 − α

E(∂z∗cj)Ci − E

(
∂z∗cjzζ̃

dT′
g

dp∗i

)
− E

(
∂z∗ci

dTg

dp∗i

)

Using the same steps as in proposition 7 we can rewrite this:

dCj

dp∗i
= ∑

k

dCj

dqk

dqk
dp∗i

− 1
1 − α

E(∂z∗cj)Ci −
1

1 − α
E

(
zζ̃

∂T̃′

∂qi

ζ̃

ζ

1
1 − T′

dT′
g

dp∗i

)

Given that 1/qjdqj/dp∗i = −α1/CjdCj/dp∗i + 1j=i1/pi, we have:[
1
qj

dqj

dp∗i

]
= (Id + ∆αC)−1

[
αj

1 − α
E(∂z∗cj)

Ci
Cj

+ 1i=j
1 − αi
1 − α

1
qi

+
1
q0

j

dqj

dp∗i

]

With Cj
1
qj

dq0
j

dp∗i
= α

1−α E

(
zζ̃

qj∂T̃′

∂qi

ζ̃
ζ

1
1−T′

dT′
g

dp∗i

)
.
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Therefore, the tax schedule is determined by the 4 following equations:

dT̂′

dp∗i

∣∣∣∣
z
=

dT̃′
ℓ

dp∗i

∣∣∣∣∣
z

+
dT′

g

dp∗i

∣∣∣∣∣
z

+ ∑
j

dT̃′
ℓ

dqj
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z

dq0
j

dp∗i

ζ̃

ζ

zζ̃ f (z)
(1 − T′)2

dT′
g

dp∗i
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z

= (1 − α)E
g
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g′

g

(
dT̂
dp∗i

− Eg
(

g′

g
dT̂
dp∗i
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1
qj

dq0
j

dp∗i
=

α

1 − α
E

(
zζ̃

qj∂T̃′

∂qi

ζ̃

ζ

1
1 − T′

dT′
g

dp∗i

)

(1 − α)E

(
dT̂
dp∗i

∣∣∣∣
z

)
= E

(
zζ̃

(
T′

1 − T′ + α

)
dT̂′

dp∗i

∣∣∣∣∣
z

)
+ Ci

Proof of Proposition A4. In all the proof, we assume that the marginal tax rates are well defined every-
where. As shown in Proposition 9, the change in government budget in response to a change of prices [dp∗]
is given by:

(1 − α)E

(
∑

i

dT̂
dp∗i

∣∣∣∣
z

dp∗i

)
= E

(
zζ̃

(
T′

1 − T′ + α

)
∑

i

dT̂′

dp∗i

∣∣∣∣∣
z

dp∗i

)
+ ∑

i
Cidp∗i

When average inflation is 0 (C · dp∗ = 0) then the change in taxes is budget neutral at initial prices. Given
that the initial schedule is optimal, this means that E(gdT̂/dp∗ · dp∗) = 0 (otherwise there would be a
budget neutral deviation, at initial prices, improving welfare).

First consider the case where g′/g negative and constant. Since E(gdT̂/dp∗ · dp∗) = 0, we have
E(g′dT̂/dp∗ · dp∗) = 0. and we have:

ζ̃

ζ

zζ̃ f (z)
(1 − T′)2

dT̂′

dp∗

∣∣∣∣
z
· dp∗ = (1 − α)E

g
z′>z

g′

g

(
dT̂
dp∗

· dp∗
)
+

ζ̃

ζ

zζ̃ f (z)
(1 − T′)2

∂T̃′

∂q

∣∣∣∣
z
· dp∗

Since by assumption, the second term on the right hand side is negative (except at z(θ) and z(θ̄) where it
is potentially 0), we necessarily have that dT̂/dp∗ · dp∗ is strictly positive at z(θ). if not, E

g
z′>z

g′
g

(
dT̂
dp∗ · dp∗

)
is non increasing at z(θ). Since the second term is decreasing at z(θ), this means that there is a small open
interval (z(θ), z∗) such that dT̂/dp∗ · dp∗ is negative. But this implies that dT̂/dp∗ · dp∗ is negative on
(z(θ), z(θ̄)). Indeed, by contradiction call z0 the first z such that dT̂/dp∗ · dp∗ is 0. Then, since E(g′dT̂/
dp∗ · dp∗) = 0, E

g
z′>z0

g′
g

(
dT̂
dp∗ · dp∗

)
< 0, since in addition ∂T̃′/∂q · dp∗ is negative at z0, we have dT̂′/

dp∗ · dp∗ strictly negative at z0. Therefore we cannot have dT̂/dp∗ · dp∗ negative on (z(θ), z0), which is a
contradiction. Therefore, dT̂/dp∗ · dp∗ is negative on (z(θ), z(θ̄)) which contradicts E(g′dT̂/dp∗ · dp∗) = 0
and dT̂/dp∗ · dp∗ is strictly positive at z(θ). Using the same logic, dT̂/dp∗ · dp∗ cannot be positive in a
neighborhood of z(θ̄). In addition, E

g
z′>z

g′
g

(
dT̂
dp∗ · dp∗

)
> 0 on (z(θ), z(θ̄)). Indeed suppose not and denote

again z0 the smallest z0 such that E
g
z′>z

g′
g

(
dT̂
dp∗ · dp∗

)
= 0. dT̂/dp∗ · dp∗ cannot be positive at z0 since then

E
g
z′>z

g′
g

(
dT̂
dp∗ · dp∗

)
would be increasing at z0 (contradicting the fact that it is positive for z < z0). therefore

dT̂/dp∗ · dp∗ is non negative at z0, but using the same reasoning as before this would imply dT̂/dp∗ · dp∗ < 0
for z > z0 so that E

g
z′>z0

g′
g

(
dT̂
dp∗ · dp∗

)
> 0.
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Since dT̂/dp∗ · dp∗ is strictly positive at z(θ) is strictly positive and since we have E
g
z′>z0

g′
g

(
dT̂
dp∗ · dp∗

)
≥

0 for all z, there exists z0 such that dT̂/dp∗ · dp∗ is 0. We now show that when the second term on the RHS
is inverse U-shaped, dT̂/dp∗ · dp∗ ≤ 0 for z > z0. Suppose not, and call z1 the smallest z > z0 such that
dT̂/dp∗ · dp∗ is positive above z1. Since E

g
z′>z0

g′
g

(
dT̂
dp∗ · dp∗

)
geq0, there exists a smallest z2 > z1 such that

dT̂/dp∗ · dp∗ is 0 at z2 . Therefore we have:
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The first term on the RHS is negative since dT̂/dp∗ · dp∗ is negative on (z), z1), the second is also negative
since dT̂/dp∗ · dp∗ is non-increasing at z0 and non-decreasing at z1. In the same way, we have
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Which contradicts the fact that the linear term is inverse U shaped.

Next we consider the case where g′/g is negative and increasing. We can decompose the solution of
our equation as dT̂/dp∗ · dp∗ = dT̂0/dp∗ · dp∗ + dT̂1/dp∗ · dp∗ where the components solve respectively:
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and Eg g′
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= 0, Eg

(
dT̂
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)
= 0.

We first analyze dT̂0/dp∗ · dp∗. Using the same step as in the previous case, we necessarily have dT̂0/
dp∗ · dp∗ positive at z(θ), and there exists z0 such that dT̂0/dp∗ · dp∗ is positive for z < z0 and non-positive
for z > z0. In addition, we have:

E
g
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g
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(z0)E

g
z′>z

(
dT̂0

dp∗
· dp∗

)
⇒ 0 < −E

g
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(
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)
This means that dT̂0/dp∗ · dp∗ generates a deficit (otherwise it would improve welfare at initial
prices since it increases welfare) and that necessarily, −E

g
z′>z

(
dT̂1
dp∗ · dp∗

)
< 0. Next, we analyze
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dT̂1/dp∗ · dp∗. First suppose E
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< 0. Then we necessarily have that g′/gdT̂1/
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in a neighborhood of z(θ). Indeed, using the same reasoning as
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, but at z0 we necessarily have dT̂′

1
dp∗ < 0 at z0 and since

g′/g is negative increasing and dT̂1/dp∗ · dp∗ > 0 at z0 this means that g′/gdT̂1/dp∗ · dp∗ is increasing at z0

which is a contradiction). If g′/gdT̂1/dp∗ · dp∗ > E
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in a neighborhood of z(θ), the same

reasoning applies. Finally, if g′/gdT̂1/dp∗ · dp∗ = E
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(
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)
in a neighborhood of z(θ) we would

have that dT̂1/dp∗ · dp∗ = 0 in the same neighborhood. Since, g′/g is increasing, this is a contradiction.
Next we have that D(z) = E
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(
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is positive on the interval (z(θ), z(θ̄)).

Again consider the smallest z0 such that it is 0 at z0 and negative in a neighborhood above. First we cannot
have g′/gdT̂1/dp∗ · dp∗ < E

g
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)
at z0 or in a neighborhood above since D(z) would be locally

increasing. This means that g′/gdT̂1/dp∗ · dp∗ ≥ E
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(
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)
in the neighborhood above z0 which

implies by the same reasoning as at z(θ) that g′/gdT̂1/dp∗ · dp∗ ≥ E
g
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(
g′
g

dT̂1
dp∗ · dp∗

)
for all z > z0 and

implies (since g′/gdT̂1/dp∗ · dp∗ cannot be constant) that D(z) is positive everywhere above z0.
Therefore, when E

g
z′>z

g′
g

(
dT̂1
dp∗ · dp∗

)
< 0, we have that dT̂1/dp∗ · dp∗ is non negative and increasing.

Since the equation determining dT̂1/dp∗ · dp∗ is linear, when it is positive instead, dT̂1/dp∗ · dp∗ would be
non positive an decreasing. So to have −E

g
z′>z

(
dT̂1
dp∗ · dp∗

)
< 0 we need dT̂1/dp∗ · dp∗ to be non negative

and increasing which implies there exists a smallest z0 such that that dT̂/dp∗ · dp∗ is positive below z0 and
−E

g
z′>z0

(
dT̂
dp∗ · dp∗

)
> 0, meaning that households with income larger than z0 gain on average.

Non Constant Elasticity. Our comparative statics equation can easily be extended to the general quasilin-
ear case with U(c, z/θ) = u(c1, .., cn)− ψ(z/θ) and v(q1, .., qn, z∗) linear at initial prices. The only difference
is that now ζ depends on z.

Coming back to the proof of Proposition 4, we now have:

∂θ ln(MRS) = −1
θ

(
1 +

z/θψ′′(z/θ)

ψ′(z/θ)

)
= −1

θ

(
1 +

1
ζ(z/θ)

)
Therefore, denoting ϵζ the curvature of ζ (ϵζ = (z/θ)ζ ′/ζ) we have, defining as before dT̃/dp∗i = dT/
dp∗i |z + ∂z∗c · dq/dp∗i :

d
dp∗i

{∂θ ln(MRS)} = −1
θ

ϵζ
ζ̃

ζ

1
1 − T′

dT̃′

dp∗i

Note that ϵζ can be measured in this case either by examining how the elasticity ζ responds to wage changes
or how the elasticity varies across the income distribution. Using this it is then immediate to rederive the
results of Section 3. For simplicity, we keep the assumption that the αi are constant across markets.
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Proposition A.5. Consider a linear social welfare function. The change in real wedge in partial equilibrium is given
by:

(1 − κ(z))
∂T̃′

ℓ

∂qi
=
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∂qi

Where ∂T̃′
iso/∂qi is the real wedge change in the isooelastic case defined in Definition 1 of the main text, and

κ(z) = ζ/(1 + ζ)ϵζ(T′(1 − α) + α)).

The response of aggregate consumption is given by:
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Finally, the response of the real wedge to a price change is given by:
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When the social welfare function is non linear, the response to price change of the real wedge is given by:
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Therefore, with non isoelastic preferences the results are the same as in the elastic case with a scaling
given by 1 − κ(z). This means in particular that the qualitative properties (in particular the ones of Proposi-
tion A.4) of the response of the marginal tax rate to prices are similar when κ(z) < 1.

A.4 Examples of Supply Side Specifications

We first describe an abstract entry model a la Melitz (2003) with general homothetic preferences across
subvarieties satisfying our specification of the pricing function. We then provide more concrete examples.
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In each sector k, a large mass M̃k of potential entrants which can produce subvarieties of the of the
aggregate product k. Entry is done in two steps. First firms pay a fixed labor cost ξ0

k . Upon paying the
investment cost, they learn their productivity type i (ex-ante uniformly distributed) and decide to pay
a second fixed labor investment ξ

p
k to produce. The subvariety ck(i) is then produced according to the

variable cost function κk(i)ψ(c), with κ(i) non decreasing.

On the demand side, we assume first that preferences are separable between the sub-varieties
produced across markets, second that preferences for the sub-varieties in market k are defined by an
homothetic aggregator Ck({ck(i)}i, Mk).9 Since preferences for subvarieties are homothetic, prices will only
depend on aggregate spending in market k, Ek rather than the distribution of individual spending {ek(θ)}θ .
In addition the agent’s problem defines an ideal price index Pk with PkCk = Ek and a demand function for
subvarieties i ck(i) = dk(p(i), Pk, δ({p(i)}i, Mk), Mk)Ek, with δ an aggregate demand shifter.

Then it is direct to see that Pk is only a function of Ek, and therefore of Ck which is consistent with
our pricing function. Indeed, the firm first order condition

dk((p(i), Pk, δ, Mk) + p(i)∂pdk((p(i), Pk, δ, Mk) = κ(i)ψ′(dk((p(i), Pk, δ, Mk)Ek)∂p dk(p(i), Pk, δ, Mk),

determines the prices of producing firms p(i) and dk((p(i), δ, Pk, Mk) as functions of Ek,Pk Mk and δ. Since
δ is itself a function of p(i) and Mk, it is implicitly a function of Ek, Pk and Mk and so are the prices p(i) and
dk(i), which can be written d̃i(Ek, Pk, Mk) and p̃i(Ek, Pk, Mk).

Next, the entry condition determines the set I of producing firms through:

i ∈ I ⇔ p̃i(Ek, Pk, Mk)d̃i(Ek, Pk, Mk)Ek − κ(i)χ(d̃i(Ek, Pk, Mk)Ek) ≥ ξp

so I only depend on Ek, Pk and Mk. Finally the free entry condition:∫
1(i ∈ I)( p̃i d̃iEk − κ(i)ψ(d̃iEk)− ξp)gdi = ξ0M̃k

determines implicitly Mk as a function of Ek and Pk. Since we have PkCk = Ek and Ck is only a function of Ek

and Pk, Ck = Ck({d̃i(Ek, Pk, Mk(Ek, Pk))Ek, Mk(Ek, Pk)), Pk itself is only a function of Ek or equivalently of Ck

when a solution exists and is unique (some additional assumptions would be needed to ensure it is the case).

With Kimball preferences, for example, we have:∫
Y(ck(i)/Ck)di = 1

The first order conditions of the agent’s problem give:

ck(i) =
Ek
Pk

Y ′−1
(

λ
∫ ck(j)

Ck
Y ′
(

ck(j)
Ck

)
dj p(i)

)
9The dependency of the aggregator on Mk can capture for example love for variety
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We can then define δ = λ
∫

ck(j)/CkY ′ (ck(j)/Ck) we have that δ only depends on the set of prices {p(i)}i

since the function is homothetic so ck(j)/Ck and λ only depend on prices and not on Ek.

Second, with a continuous version of the homothetic translog, we have, denoting Uk the sub-utility
of consumption of market k subvarieties:

ln(Ek) = ln(Uk) + αo +
M̃k − Mk

2γM̃k Mk
+
∫

i∈I

1
Mk

ln(p(i))di +
γ

2Mk

∫
i∈I

∫
j∈I

ln(p(i))(ln(p(j))− ln(p(i)))didj

So we directly have:

p(i)ck(i) = Ek

(
1

Mk
− γ(ln(p(i))−

∫
j∈I

ln(p(j))
Mk

dj)
)

the demand function takes the form above with δ({p(i)}i, Mk) =
∫

j∈I ln(p(j))/Mkdj

B Quantitative Analysis of the Optimal Tax Schedule

This section describes the quantitative model. We first describe the economic environment. We then describe
consumer preferences, contrasting the homothetic specification with non-homothetic preferences. Third,
we describe the social planner’s problem and the ordinary differential equations (ODEs) characterizing the
solution. Finally, we present the solution algorithm for the ODEs.

B.1 Setting

B.1.1 Indirect Utility Function

The quantitative model uses a standard additively separable specification:

U (z∗, z, p, θ) = v (z∗, p)− ψ
( z

θ

)
(7)

ψ
( z

θ

)
=

1
1 + 1

εz

( z
θ

)1+ 1
εz (8)

where ψ
( z

θ

)
is the cost of earning z given ability θ, and v (z∗, p) is the indirect utility function given prices

and disposable income.

B.1.2 Pricing Function

Denoting aggregate consumption by Ci, the quantitative model is based on an isoelastic pricing function:

pi = γiC−α
i ∀i ∈ I (9)
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We calibrate γi to fit prices at the observed schedule, which are normalized to one without loss of generality,
using the relationship:

γi ≡ p0,iCα
0,i (10)

where C0,i is aggregate quantity consumed in sector i at initial prices. To obtain observed consumption,
we compute disposable income at the observed schedule as defined in appendix B.1.3, and then compute
sectoral consumption given the expenditure shares described in appendix B.2.1 and appendix B.2.2.

B.1.3 Skill Distribution

The skill distribution f (θ) plays a key role in the shape of the optimal tax schedule. We use data from
Hendren (2020) on the observed tax schedule to calibrate the skill distribution. As the data is only available
for each percentile of the observed income distribution, we interpolate for marginal tax rates at income
levels within the observed bounds using p-chip interpolation.

We then create a mapping from earned income at the observed tax schedule to skill type θ. Following
Saez (2001), we obtain this mapping using the individual’s utility function described in appendix B.1.1,
which depends on the functional form of v (z∗, p). We use two altenative forms of this indirect utility
function - homothetic as described in appendix B.2.1 and non-homothetic as described in appendix B.2.2.

At the observed schedule in the homothetic case, we fit the skill distribution after setting: pobs = p0 ≡
1. When computing income at the observed schedule in case of non-homothetic preferences, we use the
“deflator” as defined in definition B.1. When we apply the deflator at any initial prices p0 the indirect
utility of the agent will always be the same as in the homothetic case with p0 = 1. This approach allows us
to use the same skill distribution in the homothetic and in non-homothetic cases.

B.2 Consumer Preferences

This section describes the indirect utility function v (z∗, p) from appendix B.1.1.

B.2.1 Homothetic Preferences

With homothetic preferences, the indirect utility function v (z∗, p) described in appendix B.1.1 is given by:

v (z∗, p) ≡ z∗

p
(11)

where p is the price in the economy. The individual’s utility function, per equation (7), is:

U (z∗, z, p, θ) =
z∗

p
− ψ

( z
θ

)
=

z∗

p
− 1

1 + 1
εz

( z
θ

)1+ 1
εz (12)
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Plugging in the definition of disposable income, the optimal z(θ) satisfies the FOC:

dU (θ)

z(θ)
=

1 − T′(z(θ))
p

−
(

z(θ)
θ

) 1
εz 1

θ
= 0

We can thus express income or skill parameters as functions of observables:

z(θ) = θ1+εz

(
1 − T′(z(θ))

p

)εz

(13)

θ =

[
z
(

p
1 − T′(z)

)εz] 1
1+εz

(14)

With θ = 0, we apply the limiting case described in appendix B.3.2.

B.2.2 Non-Homothetic CES Preferences

Definitions and Properties We use the General Non-Homothetic CES Preferences as defined in Appendix
A.1 of Comin, Lashkari and Mestieri revision 3 (2019). The indirect utility function v (z∗, p) described in
appendix B.1.1 is given by v ≡ v (z∗, p) ≡ F(C), where C is the consumption vector of the agent.

Indirect utility v is implicitly defined by:

∑
i∈I

Ω
1
σ
i

(
Ci

v
εi

1−σ

) σ−1
σ

= ∑
i∈I

(Ωivεi )
1
σ C

σ−1
σ

i = 1, (15)

where parameters εi denote the utility elasticities of each good, the elasticity of substitution between sectors
is denoted σ , and taste parameters are denoted Ωi, for an arbitrary set of sectors i ∈ I . For the quantitative
analysis, we consider two sectors, labelled “high quality” (H) and “low quality” (L).

Under this specification, Marshallian Demand (spending shares) and the price index are:

ωi(z∗) = Ωi

( pi
P

)1−σ
(

z∗

P

)εi−(1−σ)

(16)

P(p, z∗) =

[
∑
i∈I

(
Ωi p1−σ

i

)χi
(

ωi (z∗)
1−σ
)1−χi

] 1
1−σ

(17)

where χi ≡
1 − σ

εi

Using this specification, we obtain quantity consumed as:

Ci(z∗) =
ωi(z∗)z∗

pi
(18)

Definition of Deflated Non-Homothetic Indirect Utility Function In the social planner’s problem in ap-
pendix B.3.1 we use a deflated indirect utility function.
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Definition B.1 (Deflated Indirect Utility Function). Deflated indirect utility function ṽ(z∗, p) is the inverse of
the indirect utility function at initial prices, under constant returns to scale. It can be thought of as the level of “virtual
disposable income” z̃∗ that satisfies v(z̃∗,p0) = v(z∗, p). Formally,

ṽ(z∗, p) = v−1(v(z∗,p),p0) (19)

Properties of the deflated indirect utility function are listed below. At p0, the non-homothetic indirect
utility is equivalent to the homothetic case from appendix B.2.1.

dṽ(z∗,p)
dz∗

=
dv(z∗,p)

dz∗

(
dv(z̃∗,p0)

dz̃∗

)−1

where: (20)

z̃∗ = v−1(v(z∗,p), p),p0)

ṽ(z∗,p0) = z∗ (21)

dṽ(z∗,p0)

dz∗
= 1 (22)

B.3 ODEs from Social Planner’s Problem

B.3.1 Social Planner’s Problem

The social planner chooses the optimal tax schedule to maximize total utility over the distribution of types
θ, subject to budget constraint, agents’ FOC and market clearing, according to an arbitrary social welfare
function G (U(θ, p)):

maxz(θ)

∫ θ

θ
G (U(θ, p)) f (θ)dθ s.t : (23)

G (U(θ, p)) = G
(

ṽ (z∗(θ),p)− ψ

(
z(θ)

θ

))
(24)

G′ (U(θ, p)) =
dG
dU

(25)

R ≥
∫ θ

θ
(z(θ)− z∗(θ)) f (θ)dθ (26)

pi = γi
(
Ci
)−α , ∀i (27)

where:

i. Ci =
∫ θ

θ Ci(θ)dF(θ) denotes aggregate consumption in sector i

ii. R denotes the government surplus (government revenue requirement)

iii. The state variable is G(U(θ, p)) and the control variable is z(θ)
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Using the envelope theorem and our functional form for U, we can write:

U̇(θ) =
1
θ

( z
θ

)1+ 1
εz (28)

Call µ(θ) the costate variable for the evolution of G(·). The equation for µ is

µ̇(θ) =

(
(1 − α)

λ
dṽ
dz∗

− G′ (U(θ))

)
f (θ), (29)

where

• dṽ
dz∗ is the derivative of deflated indirect utility ṽ with respect to disposable income, evaluated at the
level of disposable income z∗ (which we express below as a function of θ, U and µ)

• λ is the multiplier on the government’s budget constraint

The first-order condition for z gives:

µ(θ) ·
(

1 + 1
εz

θ2

( z
θ

) 1
εz

)
= −λ

1 −
(1 − α) ·

( z
θ

) 1
εz

θ · dṽ
dz∗

 f (θ) (30)

µ(θ) = θ2

λ

(
(1 − α)

1
θ (

z
θ )

1
εz

dṽ
dz∗

− 1

)
f (θ)(

1 + 1
εz

) ( z
θ

) 1
εz

(31)

The boundary conditions are:

µ(θ) = 0

µ(θ) = 0

The government resource constraint in equation (26) results from the fact that government revenue is
distributed among the agents in the economy through a lump sum transfer such that an amount R is not
redistributed. With R denoting government surplus, we have

C =
∫

C(θ) dF(θ) =
∫

C(z∗(θ)) dF(θ) =
∫ z∗(θ)

p
dF(θ) =

∫ z(θ)− R
p

dF(θ) (32)
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B.3.2 Limiting Case

We need to address the case when θ = 0 since several equations from appendix B.3.1 become indeterminate.
We have

ζ(θ) ≡ 1
θ

(
z(θ)

θ

) 1
εz

(33)

ℓ(θ) ≡ z(θ)
θ

= (θζ(θ))εz (34)

These two functions are bounded functions of θ near 0. Using equation (30) and the definitions above we
can express:

ζ(θ) =

[
1 − α

dṽ
dz∗

− µ(θ)

θ

1 + 1
εz

λ f (θ)

]−1

(35)

U̇(θ) = ζ(θ)ℓ(θ) (36)

We still need to address the fact that µ(θ)
θ is undefined for θ = 0. Given our specification we know that:

f (0) > 0

µ̇(0) < 0

µ(θ) < 0 θ → 0+

Therefore we can use:

lim
θ→0

µ(θ)

θ
= µ̇(θ) =

(
(1 − α)

λ
dṽ
dz∗

− G′ (U(θ))

)
f (θ) (37)

Using these relationships we can express several of our key variables for θ = 0:

U̇(0) = 0 (38)

z(0) = 0 (39)

ψ(
0
0
) = 0 (40)

ζ(0) =

[
1 − α

dṽ
dz∗

− µ̇(0)
1 + 1

εz

λ f (0)

]−1

(41)

B.3.3 System of ODEs

The solution to the general case allowing for non-homotheticities in agents’ utility function and an arbitrary
social welfare function G(U(θ, p)) is given by the following system of ODEs and boundary conditions:
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U̇(θ) =
z
θ2

( z
θ

) 1
εz (42)

µ̇(θ) =

(
(1 − α)

λ
dṽ
dz∗

− G′ (ṽ − ψ)

)
f (θ) (43)

µ(θ) = θ2

λ

(
(1 − α)

1
θ (

z
θ )

1
εz

dṽ
dz∗

− 1

)
f (θ)(

1 + 1
εz

) ( z
θ

) 1
εz

(44)

with the boundary conditions:

µ(θ) = 0

µ(θ) = 0

Furthermore, we can express incomes as a function of other variables:

z = θ ·
(

1 − α

θ · dṽ
dz∗

− µ(θ)

λ f (θ)
·

1 + 1
εz

θ2

)−εz

(45)

z∗ = ṽ−1
(

U(θ) + ψ
( z

θ

))
= ṽ−1

(
U(θ) +

1
1 + 1

εz

( z
θ

)1+ 1
εz

)
(46)

This is a system of non-linear equations we can solve for to obtain z and z∗ given θ, U(θ), µ(θ), λ. We apply
the limit case as per appendix B.3.2.

Homothetic Case With homothetic indirect utility, the system of ODEs can be expressed as:

U̇(θ) =
z
θ2 ·

( z
θ

) 1
εz

µ̇(θ) =

(
(1 − α) · λ · p −

(
z∗

p
− ψ

)−σ̃
)
· f (θ)

µ(θ) = θ2
λ

(
p(1 − α) 1

θ

( z
θ

) 1
εz − 1

)
f (θ)(

1 + 1
εz

) ( z
θ

) 1
εz

z = θ ·

 −θ2λ f (θ)

µ(θ)
(

1 + 1
εz

)
− θλ(1 − α) f (θ)p

εz

z∗ = p ·
(

U(θ) +
1

1 + 1
εz

·
( z

θ

)1+ 1
εz

)
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with boundary conditions:

µ(θ) = 0

µ(θ) = 0

B.3.4 Social Welfare Function

To study the role of non-linearities in the social welfare function, we consider a specification with constant
relative risk aversion, where the CRRA risk parameter is denoted σ̃. The functional form is:

G′ (U(θ, p)) =
dG
dU

= (U(θ, p))−σ̃ , σ̃ ≥ 0 (47)

G (U(θ, p)) ≡

log (U(θ, p)) if σ̃ = 1
(U(θ,p))1−σ̃

1−σ̃ if σ̃ ≥ 0 ∧ σ̃ ̸= 1
(48)

B.3.5 Pareto Analysis

We also perform analysis using Pareto weights, denoted λ(θ) and set to match the results obtained with the
CRRA social welfare function G(·), with the CRRA risk parameter σ̃. The Pareto weight are given by:

λ(θ) ≡
(
Uoptim(θ)

)−σ̃ , (49)

where Uoptim(θ) is the solution of the optimal taxation problem with homothetic indirect utility function,
α = 0, and the CRRA parameter σ̃.

With Pareto weights, the social welfare function and its derivative become:

G (θ) ≡ λ(θ)U(θ, p), (50)

G′ (θ) =
dG
dU

= λ(θ). (51)

B.3.6 Defining the Equivalent Variation

The equivalent variation (EV) is defined by:

ṽ
(

z∗re f (θ) + EV(θ),pre f

)
− ψ

(
zre f (θ)

θ

)
= uoptim(θ),

where “ref ” denotes the reference point and “optim” the new equilibrium. In our main specifications, the ref-
erence point is the outcome at the optimal tax schedule with homothetic preferences, to which we compare
the outcome with non-homothetic preferences.
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B.4 Solution Algorithm

This section describes the algorithm to solve the problem described in appendix B.3.1, using nested bisection
in Matlab.

B.4.1 Convergence to Optimal Schedule

The algorithm relies on three nested loops. Each loop ensures that we satisfy one of the conditions in the
social planner’s problem (see appendix B.3.1); we guess the value of one parameter in each loop, and then
solve for all inner loops.

The loops are structured as follows, from the outer loop to the inner loop:

i. Price loop - ensures prices in the economy converge such that equation (27) is satisfied by guessing p.
The convergence condition is base on the price change.

ii. Surplus loop - ensures government surplus equation (26) converges by guessing a value of λ. The
convergence condition is the distance from the revenue requirement.

iii. Utility or µ loop - ensures that the boundary condition µ(θ) = 0 is satisfied by guessing value of U(θ).
The convergence condition is the distance between µ(θ) and the coundary condition of 0.

We set a convergence condition (tolerance) for each loop, which determines whether the variable of interest
has converged. In what follows, ϵp, ϵλ, ϵµ denote tolerance for price, surplus and utility loops, respectively.

In the description of the algorithm below, for any variable the indexes represent the iteration of price,
surplus and utility loop, respectively. The optimal schedule is defined by poptim, λoptim and Uoptim(θ), de-
noting the values under which the variable determining convergence of each loop converged.

For illustration, assume the values of counters at convergence were 3 for price, 7 for surplus and 10 for
utility. Then, the optimal value of utility is denoted U3,7,10(θ), which is the value used to solve the ODE in
the 10th utility loop, within the 7th surplus loop, within the 3rd price loop.

Thus, the optimal schedule can be defined as:

poptim = p10 = p such that (52)

ϵp ≥ 1
p

(
γ

∫ θ

θ
C
(
z∗(θ;p, λoptim, Uoptim(θ))

)
dF(θ)− p

)
where (53)

λoptim = λ3,7 = λ such that (54)

ϵλ >

∣∣∣∣∣
∫ θ

θ
z(θ;p, λ, Uoptim(θ))− z∗(θ;p, λ, Uoptim(θ)) f (θ)dθ − R

∣∣∣∣∣ where (55)

Uoptim(θ) = U3,7,10(θ) = U(θ) such that (56)

ϵµ >
∣∣µ(θ;p, λ, U(θ))

∣∣ (57)
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B.4.2 Adjustment of Bounds

In the bisection algorithm, we update the bounds at the end of each iteration of loop based on the value of
the variable of interest. In the case of the utility or µ loop, we change bounds on U(θ) according to the rule:

UUB(θ) = Ucurrent(θ) if µ(θ) < 0 or the solver failed

ULB(θ) = Ucurrent(θ) if µ(θ) ≥ 0

In the case of the surplus loop, we change bounds on λ according to the rule:

λUB = λcurrent if
∫ θ

θ
(z(θ)− z∗(θ)) f (θ)dθ ≥ R

λLB = λcurrent if
∫ θ

θ
(z(θ)− z∗(θ)) f (θ)dθ < R
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Figure A1: Sensitivity Analysis for the Response to Observed Price Shocks (2004-2015), CEX-CPI data:
Results with Labor Supply Elasticity ε = 0.33

(i) σ = 0.6 (ii) σ = 2

Notes: in all speci�cations, the IRS parameter is set to α = 0.3 and the labor supply elasticity to ε = 0.33. The CEX-CPI dataset is used in both
panels and the initial tax schedule is taken from Hendren (2020). See Section 5.2.1 for a description of the quantitative model and counterfactuals.

Figure A2: The Response of the Optimal Tax Schedule to Observed Price Shocks (2004-2015), Nielsen data

Notes: in this panel, we only consider the exogenous shock to prices, without taking into account the endogenous response of prices. The Nielsen
data is used to measure price changes, and the initial tax schedule is taken from Hendren (2020). Section 5.2.2 describes the quantitative model
and counterfactuals.
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Figure A3: The Response of the Optimal Tax Schedule to Observed Price Shocks (2004-2015)
in the Diamond-Mirrlees Supply-Side Model
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Notes: in this panel, we only consider the exogenous shock to prices, without taking into account the endogenous response of prices. The
CEX-CPI linked dataset is used to measure price changes, and the initial tax schedule is taken from Hendren (2020). Section 5.2.2 describes the
Diamond-Mirrlees model of the supply side, where goods are produced competitively and all pro�ts are taxed.
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Figure A4: The Response of the Optimal Tax Schedule to Observed Shifts in the Skill Distribution (2004-2015):
The Role of the Curvature of the Social Welfare Function

(i) Exogenous prices

(ii) Endogenous prices, σ = 0.6 (iii) Endogenous prices, σ = 2

Notes: the IRS parameter is set to α = 0.3 and the labor supply elasticity to ε = 0.21; the CEX-CPI dataset is used in both panels and the initial
tax schedule is taken from Hendren (2020). See Section 5.2.2 for a description of the quantitative model and counterfactuals.
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Figure A5: Returns to Scale and the Optimal Tax Schedule:
Sensitivity to Parameter Values
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(a) α = 0.3, ε = 0.21, CRRA=0.5
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(b) α = 0.3, ε = 0.33, CRRA=1
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(c) α = 0.3, ε = 0.21, CRRA=0.5

Notes: The �naive� correction uses the formula 1− T ′NAIV E(θ) =
1

1−α (1− T ′CRS(θ)).
See Section 5.3.1 for a description of the quantitative model and counterfactuals.
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Figure A6: Lower Returns to Scale Reduce the Impact of Productivity Shocks
(α = 0.2, εz = 0.21, Pareto weights from SWF CRRA=1, PE price low-quality +2.5%, PE price high-quality -2.5%)
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(c) Equilibrium Prices (d) ∂ṽ/∂z∗ by Earned Income Before vs. After Price Shocks
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(e) ∂ṽ/∂z∗ ·G′(θ) by Earned Income (f) EV , initial vs. new schedules

Notes: The quantitative model uses Pareto weights computed at the optimal homothetic tax schedule obtained under a social welfare function
with CRRA=1. The exogenous productivity changes are such that the partial equilibrium price of the low-quality bundle increases by 2.5% while
the partial equilibrium price of the high-quality bundle decreases by 2.5%, as described in Section 5.3.3.
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