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Abstract

How should we measure changes in consumer welfare given observed data on prices and

expenditures? This paper proposes a nonparametric approach that holds under arbitrary

preferences that may depend on observable consumer characteristics, e.g., when expendi-

ture shares vary with income. Using total expenditures under a constant set of prices as our

money-metric for real consumption (welfare), we derive a principled measure of real con-

sumption growth featuring a correction term relative to conventional measures. We show

that the correction can be nonparametrically estimated with an algorithm leveraging the

observed, cross-sectional relationship between household-level price indices and household

characteristics such as income. We demonstrate the accuracy of our algorithm in simulations.

Applying our approach to data from the United States, we find that the magnitude of the cor-

rection can be large due to the combination of fast growth and lower inflation for income-

elastic products. Setting reference prices in 2019, we find that (i) average real consumption

per household in 1955 is underestimated by 11.5% by the uncorrected measure, and (ii) the

correction reduces the annual growth rate from 1955 to 2019 by 18 basis points, which is

larger than the well-known “expenditure switching bias” over the same time horizon.
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1 Introduction

How should we measure long-run changes in consumer welfare? Classical demand theory shows
that intuitive index number formulas, which aggregate observed changes in consumed quantities
and prices, may provide precise measures of the change in living standards. However, this power-
ful insight requires the crucial assumption that the composition of demand remains independent
of consumer income (see, e.g., Diewert, 1993). This so-called homotheticity assumption runs
counter to the empirical regularity that demand for many goods and services systematically de-
pends on income, a fact known since at least Engel (1857). It also belies the growing empirical
evidence on sizable differences in the rates of inflation in the cost-of-living experienced by differ-
ent income groups in the United States, with lower inflation rates for higher-income groups.1

Despite this important and well-known theoretical limitation, classical price index formulas
remain widely used in practice due to their simplicity, flexibility, and generality. Little is known
about potential biases arising from the restrictive homotheticity assumption in the resulting mea-
sures of long-run growth in living standards. Current alternatives require us to specify and es-
timate the structure of the demand system–a task that leaves open many questions about the
choices of functional forms and identification strategy. For instance, Baqaee and Burstein (2021)
have recently offered an approach that relies on the knowledge of the elasticities of substitution
across goods to construct measures of welfare growth (see also Samuelson and Swamy, 1974).

In this paper, we develop a novel approach for measuring welfare change that allows for flexi-
ble dependence of the patterns of demand on income and other sources of observed heterogene-
ity without the need for functional form assumptions. Compared to the standard setting, the
only additional data requirement is access to a cross-section of product prices and quantities for
consumers with heterogenous incomes. Such data is widely available through standard surveys
of consumption expenditure. Our approach nonparametrically estimates the cross-sectional de-
pendence of measured price index formulas on consumer income, which we show is sufficient
to provide precise approximations for a theoretically-consistent measure of real consumption.
The approach remains valid for any continuously differentiable preferences under any observ-
able source of heterogeneity. We apply our method to account for nonhomotheticity of demand
in measuring growth in consumer welfare in the United States from 1955 to 2019. In addition
to improving the measurement of long-run growth and inflation inequality, our new approach
can have important policy implications, such as the indexation of the poverty line and a more
efficient targeting of welfare benefits. This approach also provides a blueprint for distributional
national accounts (Piketty et al., 2018) that allow for nonhomotheticity and inflation inequality.

1See, for example, Kaplan and Schulhofer-Wohl (2017), Jaravel (2019), Argente and Lee (2021), Klick and Stock-
burger (2021), and Jaravel (2021).
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We begin with the basic theory of the exact measurement of welfare change under stable
preferences along a path of smoothly changing prices. We define real consumption as the expen-
diture required to achieve a certain level of welfare under constant prices fixed at a base period
(money metric). Given this definition, there exists a mapping from real consumption to total
consumer expenditure at any point in time. We show that we can recover this mapping as the
solution to a differential equation defined in the terms of the Divisia index function. The Di-
visia index, a standard measure of the change in the cost-of-living, is commonly defined as the
expenditure-share-weighted mean price growth across goods at any point in time. Since in our
setting expenditure shares generically depend on income, in our environment the index becomes
a function of total consumer expenditure. Our results show that this function summarizes all the
information in the demand function that is relevant to recovering real consumption.

When preferences are homothetic, the Divisia index function is constant in total consumer
expenditure. Our key differential equation in this case has a simple solution: the growth in real
consumption at any point in time is given by growth in total consumer expenditure, deflated
by the value of the Divisia index. Since index formulas approximate the Divisa index for each
consumer in the data, we can chain them over time to construct approximate measures of real
consumption in the data under homotheticity.

When preferences are nonhomothetic, the differential equation implies that we need to mul-
tiply the deflated total expenditure by a nonhomotheticity correction factor. This correction is
governed by the elasticity of the mapping between real consumption and total expenditure for
the consumer at any point in time. Under homotheticity, this mapping is always linear, therefore
the elasticity and the correction factor are both exactly unity. More generally, however, the con-
vexity of the mapping changes over time and the correction factor deviates from unity if price
inflation varies as a function of income. Importantly, we show how this correction implies a
systematic dependence of the measures of real consumption growth on the base vector of prices
chosen to express them.

To see the intuition behind this correction, consider a setting where consumer welfare is rising
over a time horizon during which inflation rates are lower for goods with higher income elasticity
(luxuries). Fixing prices in the initial period as our base, real consumption is by definition linear
in (and identical to) total expenditure in the initial period. As time passes, the relative cost of
achieving higher levels of real consumption falls, since relative prices are falling for goods more
heavily consumed by consumers as they become richer. In other words, the mapping between real
consumption and total expenditures becomes more concave over time.2 Thus, a given rise in total

2One way to understand this change in concavity is that it accounts for the cumulative effect of the past inflation
inequality. A consumer who was previously poor may not have immediately benefitted from the fall in the price of
income elastic products in the past, since they consumed very little of those products. However, they benefit from
those past price changes today if their nominal income rises and they begin to consumer those products, since the
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expenditure translates into increasingly larger gains in real consumption as consumers become
richer. The conventional approach assumes a linear mapping, and thus ignores the gradual fall in
its curvature, leading to an underestimation of the growth of real consumption under the initial
base period in this case.3 Our nonhomotheticity correction accounts for changes in the curvature
of this mapping to accurately measure growth in terms of any base period.

We next show how to construct approximate solutions to our key differential equation to re-
cover real consumption in settings involving discrete observations of consumer choice, where we
do not know the underlying preferences. The key observation is that we can use cross-sectional
variations in the price index formulas, across consumers/households with different levels of in-
come, to approximate the Divisia index as a function of total expenditure. We use this insight
to provide algorithms that nonparametrically approximate the nonhomotheticity correction us-
ing cross-sectional consumer data, assuming arbitrary but identical nonhomothetic preferences
across consumers. Our algorithms approximate the Divisia function using cross-sectional data
and then integrate it to construct the mapping between real consumption and total expenditure.
In the base period, total expenditure by definition coincides with real consumption. This allows
us to nonparametrically approximate the correction as the elasticity of the observed prices index
formulas of different consumers with respect to their total expenditure. Using this elasticity, we
obtain the approximations for the value of real consumption in periods immediately before or
after the base period. We can then recursively apply the same strategy in subsequent periods to
approximate real consumption over the entire period of interest.

We provide several such algorithms, depending on the choice of the price index formula.
Using geometric, Laspeyres, and Paasche indices, we can construct first-order approximations,
whereas by relying on Törnqvist, Fisher, or Sato-Vartia we can construct second-order approx-
imations.4 We demonstrate the accuracy our first- and second-order algorithms using a simu-
lation with known preference parameters, using the nonhomothetic CES (nhCES) preferences
of Comin et al. (2021). In an environment featuring growth in real consumption, we confirm
that our procedure accurately recovers the evolution of the exact index using the observed cross-

same rise in nominal income now translates to higher real consumption growth for them due to a more concave
mapping between nominal and real consumption. See Oberfield (2022) for a manifestation of this idea in a model of
growth featuring inflation inequality.

3If we instead express real consumption in terms of constant final period prices as our base, the same logic implies
that conventional approach overestimate the growth in all preceding periods. In this case, since total consumer
expenditure is identical to real consumption in the final period, it must be a convex function of real consumption in
all prior periods. This leads to overestimating the growth of real consumption when using the final period as base.
In Section 2.2, we show formally that the sign of the bias in growth measurement induced by the nonhomotheticity
correction inherently depends on the choice of the base period.

4Establishing the second-order equivalence of the Sato-Vartia index with superlative indices such as Fisher and
Törnqvist constitutes another important contribution of our paper. The order of approximation is given in terms
of the annual growth in total expenditure and prices across goods, as discussed in Section 2.3.
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sectional data, without any knowledge of the underlying preference parameters.
In the empirical part of the paper, we apply our approach to data from the United States

and quantify the magnitude of the bias in conventional measures of real consumption growth
that ignore nonhomotheticity effects. We build a new linked dataset providing price changes
and expenditure shares at a granular level from 1955 to 2019 across percentiles of the income
distribution. This dataset combines several data sources, primarily drawing from disaggregated
data series available from the Consumer Price Index (CPI) and the Consumer Expenditure Survey
(CEX). This new linked dataset allows us to provide evidence on inflation inequality over a long
time horizon, thus extending prior estimates that have focused on shorter time series. Computing
inflation using group-specific price index formulas, we find that inflation inequality is a long-run
phenomenon. Using a geometric index formula, we find that cumulative inflation from 1955 to
2019 varies from 700% at the top of the income distribution to 875% at the bottom.

Since richer households experience lower inflation rates in the data, our theory implies that,
at any point other than the base period, consumers are actually better off than that suggested by
conventional, uncorrected measures. Intuitively, when we look into the past from the perspective
of today’s prices, we observe that (i) households were on average poorer sixty-five years ago, i.e.
they had stronger preferences for necessities, and (ii) necessities were cheaper. These empirical
patterns imply higher consumer welfare sixty-five years ago when accounting for nonhomoth-
eticity effects. Symmetrically, looking at today’s economy from the perspective of prices in a
distant period in the past, we observe that (i) households got on average richer and (ii) luxuries
got cheaper, implying higher average welfare today if we account for nonhomotheticity effects.

Empirically, we find that the magnitude of the nonhomotheticity correction can be large.
For example, taking reference prices in 2019, we find that average real consumption (per house-
hold) in 1955 was underestimated by about 11.5% by the uncorrected measure.5 The standard,
uncorrected measure of cumulative real consumption growth is 270% over this period, or 2.07%
growth annually. In contrast, with the nonhomotheticity correction and 2019 reference prices,
cumulative consumption growth falls to 232%, or an annualized growth rate of 1.89% per year.6

Thus, in this case the nonhomotheticity correction reduces the annual growth rate from 1955 to
2019 by 18 basis points, which is larger than the observed difference of 11 basis between Laspeyres

5We find that the magnitude of the bias is similar across income percentiles. Note that our goal is to uncover the
correct measures of real consumption at the income percentile (synthetic household) level, without taking a stance on
the aggregation of welfare. In other words, we report our measures of average real consumption only as a summary
of the results across income percentiles, to make them comparable with the corresponding measurs reported in the
official statistics. Since our proxy for real consumption is a money metric utility, different approaches to aggregating
these values across households yield different social welfare functions (see Blackorby and Donaldson, 1988; Slesnick,
1991; Bosmans et al., 2018, for the properties of money metric social welfare functions).

6The sign and magnitude of the nonhomotheticity correction to the measurement of real consumption growth
inherently depends on the choice of the base period, which we discuss further in Section 3.
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and Paasche indices over the same time horizon. These results show that the magnitude of the
nonhomotheticity correction can be as large as the well-known “expenditure switching bias” (or
“substitution bias”) affecting the Laspeyres and Paasche indices, which demonstrates its quanti-
tative relevance.

Finally, we show in an extension that our strategy generalizes to settings where preferences
systematically vary in consumer characteristics, e.g., age, family size, education, etc. When these
characteristics evolve over time, we need to adjust our measures by characteristic correction fac-
tors that capture the elasticity of the mapping from real consumption to total expenditure with
respect to the changing characteristics. We characterize this mapping and provide algorithms
to approximate the resulting corrections, using the cross-sectional variations in price price in-
dex formulas and consumer characteristics. Empirically, we apply our algorithm to quantify the
adjustment to average real consumption implied by consumer aging in the United States. We
document a strong positive relationship between conumer age and inflation, which alters the
measurement of real consumption due to the increase in average consumer age over time. We
find that the implied adjustments to real consumption are economically meaningful but much
smaller than the nonhomotheticity correction, which justifies our focus on the latter.

Prior Work Our paper builds on and contributes to three strands of literature. First, we ex-
tend the literature on index number theory (e.g., Pollak, 1990; Diewert, 1993), which has enabled
transparent and consistent comparisons of the aggregate measures of consumption and produc-
tion over time and space only relying on observables. As emphasized by Samuelson and Swamy
(1974), many classical results do not generalize beyond settings involving homotheticity in pref-
erences. Under nonhomotheticity, Diewert (1976) has showed that one can still rely on the con-
ventional price index formulas to measure changes in welfare locally. However, we show that
these results do not generalize to welfare comparisons over long time horizons. We provide a
detailed discussion of the contrast between our results and these classical results in Section 2.3.5.7

Second, we advance a growing literature raising the point that standard price index formulas
suffer from a bias due to nonhomotheticities, whose magnitude relates to the covariance between
income elasticities and price changes (e.g., Fajgelbaum and Khandelwal, 2016; Atkin et al., 2020;
Baqaee and Burstein, 2021). In particular, Baqaee and Burstein (2021) have recently highlighted
the failure of standard measures of real consumption to capture correspond to theoretically con-
sistent welfare measures. They suggest relying on the estimates of the elasticities of substitution
to account for the role of nonhomotheticity.8 In contrast, we provide a nonparametric approach

7Our approach assumes utility maximization, and thus contrasts from the approach of Blundell et al. (2003) who
rely on revealed preference inequalities to develop a test for the axioms of revealed preference, and propose lower
and upper bounds on the true cost-of-living as a by-product of their strategy.

8Baqaee and Burstein (2021) additionally study the consequences of the endogeneity of prices in general equilib-
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that does not require specifying the underlying demand functions. The importance of the co-
variance between income elasticities and inflation for measuring welfare change is also noted by
Fajgelbaum and Khandelwal (2016) and Atkin et al. (2020). Fajgelbaum and Khandelwal (2016)
measure changes in welfare gains from trade liberalization across different income groups in a
parametric setting and under the assumption of an AIDS demand system (Deaton and Muell-
bauer, 1980).9 Atkin et al. (2020) consider the problem of welfare measurement in the absence of
reliable price data, and rely on separability assumptions on the structure of preferences to infer
welfare from shifts in the Engel curves. For this procedure to hold without the need for estima-
tion of structural elasticities of substitution, they rule out the types of covariance patterns that
lead to large nonhomotheticity corrections in our framework. In summary, while this litera-
ture provides parametric corrections for the bias, our contribution is to provide a nonparametric
correction that remains valid under arbitrary preferences where all consumer heterogeneity is in
terms of observables.

Third, we contribute to the literature on the measurement of inflation inequality (e.g., Hobijn
and Lagakos, 2005; McGranahan and Paulson, 2006; Kaplan and Schulhofer-Wohl, 2017; Jaravel,
2019; Argente and Lee, 2021). Prior work on inflation inequality has posited the existence of sep-
arate homothetic indices for different income groups. We apply our methodology to provide esti-
mates of inflation inequality that are robust to potential biases arising from nonhomotheticities.
Using our new linked dataset covering the period 1955-2019 in the United States, we apply our
methodology to the measurement of short, medium, and long run growth in real consumption,
and we quantify the magnitude of the bias stemming from the nonhomotheticity correction.

The remainder of this paper is organized as follows: Section 2 presents our theory, approxi-
mation algorithms, and simulations. Section 3 reports the empirical analysis, and Section 4 gener-
alizes our approach to settings where preferences vary with observable consumer characteristics.
Several proofs and additional results are reported in the appendix.

2 Measuring Welfare Changes under Nonhomotheticity

In this section, we present our theory for the exact measurement and empirical approximation
of real consumption growth under preference nonhomotheticity. Section 2.1 introduces the no-
tation and defines the main concepts used for the measurement of welfare, cost of living, and

rium, as well as unobserved heterogeneity, e.g. taste shocks. The latter effects have also been recently considered by
Redding and Weinstein (2020). We note that, subsequently to our paper, Baqaee et al. (2022) proposed an alternative
to our algorithms. We discuss the close connections between their approach and ours in Appendix A.3.3.

9An earlier literature showed how parametric AIDS specifications can be used to make welfare comparisons over
time (Oulton, 2008) or across countries (Feenstra et al., 2009) in the presence of non-homotheticities, estimating
only income elasticities and without the need to estimate elasticities of substitution.
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real consumption. Section 2.2 presents the theory for the exact measurement of welfare growth
assuming the knowledge of a specific function that combines information on consumer demand
with price changes. Section 2.3 derives our approximate results in terms of observable data. Fi-
nally, in Section 2.4 we perform a simulation to illustrate and validate the accuracy of our ap-
proach.

2.1 Definitions

2.1.1 Real Consumption and the True Price Index

Consider consumer preferences in the space of I products characterized by a utility function
U (q) where q ≡ (qi )

I
i=1 is the (nonnegative) vector of quantities consumed of each good. We as-

sume that the corresponding expenditure function E (u;p), characterizing expenditure required
to achieve utility u under vector of prices p ≡ (pi )

I
i=1 , is second-order continuously differen-

tiable. Moreover, consider a path of prices pt over the time interval t ∈ [0,T ], and let s=ωt (y)
denote the vector of expenditure shares across goods as a function of total expenditure y under
these preferences at time t , with y ≡

∑

i pi qi and si ≡ pi qi/y. The function ωt (·) characterizes
the Marshallian demand for the vector of prices prevailing at time t .10 Since we do not restrict
the preferences to be homothetic, Marshallian demand depends on total spending y.

We begin by defining our concept of real consumption as a money metric for consistent mea-
surement of welfare over time.

Definition 1 (Real Consumption). For a given vector of prices pb (with 0≤ b ≤ T ), define real
consumption under constant time-b (base) prices as a monotonic transformation Mb (·) of utility u
given by

c b =Mb (u)≡ E (u;pb ) . (1)

Equation (1) constitutes our money-metric for welfare for a consumer with utility u, which
gives the minimum expenditure needed to achieve that level of utility under the vector of prices
prevailing at time b . Since real consumption is defined with reference to base time period b , we
must include b in our notation for real consumption, c b . For brevity, we will often drop the
superscript to simplify the expressions whenever it is clear that the base b is fixed.

Definition 1 constructs a fixed mapping from utility to real consumption that does not vary
with time. We now define a time-dependent function χ b

t (·) that maps real consumption c under
base period b to the value of the total expenditure required to achieve that level of real consump-
tion under current prices pt . Formally, this function is given by

χ b
t (c)≡ E

�

M−1
b (c); pt

�

, (2)

10From Shephard’s lemma, we haveωi ,t (y)≡ ∂ log E (u;pt )/∂ log pi ,t subject to y = E (u;pt ).
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where M−1
b (c) is the level of utility corresponding to real consumption c . Note that for a given

consumer with real consumption c b
t and total expenditure yt at time t , we have yt = χ

b
t

�

c b
t

�

.
Moreover, by definition we have c = χ b

b (c) for all c .
Corresponding to Definition 1, we define the growth in real consumption between periods

t0 and t under the base vector of prices at time b as the ratio c b
t /c b

t0
, which is also a (standard-of-

living) quantity index. We also define an index for the inflation in the cost-of-living corresponding
to the level of consumption c between periods t0 and t .

Definition 2 (True Price Index). Define the cost-of-living price index P b
t0,t (c) for a consumer

with real consumption c (defined under base time period b ) between periods t0 and t (0≤ t0, t ≤
T ) as

P b
t0,t (c)≡

χ b
t (c)
χ b

t0
(c)

. (3)

Let us specifically consider the true price index defined between the base period b and the
current period t , which satisfies c ≡ χ b

t (c)/P b
b ,t (c). Since y = χ b

t (c), knowing this index al-
lows us to find real consumption by deflating total expenditure. Using Definitions 1 and 2, we
can write the following relationship between real consumption growth and the true price index
between periods t0 and t :

c b
t

c b
t0

=
yt/P b

b ,t (ct )

yt0
/P b

b ,t0

�

ct0

� =
yt/yt0

P b
t0,b

�

ct0

�

×P b
b ,t (ct )

, (4)

where the second equality follows from moving yt0
from the denominator to the numerator and

P b
b ,t (ct ) from the numerator to the denominator. Equation (4) shows that the growth in real

consumption for a consumer under any base period b is given by deflating the growth in the
nominal consumer expenditure by a composite true price index. This composite price index is
the product of the true price index between the initial period t0 and the base period b ,P b

t0,b

�

ct0

�

,
and the true price index between the base period b and the final period t ,P b

b ,t (ct ). Crucially, the
former index is evaluated at the initial level of real consumption ct0

while the latter is evaluated
at the final level of real consumption ct .

11

Homothetic Preferences Let us consider the restriction that the underlying preferences
are homothetic, that is, the composition of demand does not depend on the level of utility.

11In such a pairwise welfare comparison between periods t0 and t , the specific choice of the initial year t0 as
base leads to the concept of Equivalent Variation (EV) as our measure of welfare growth, which we can write as
EV = c t0

t /c t0
t0
=
�

yt/yt0

�

/P t0
t0,t
�

c t0
t
�

. Alternatively, choosing the final period t as the base leads to the concept of

Compensating Variation (CV), given as CV = c t
t /c t

t0
=
�

yt/yt0

�

/P t
t0,t

�

c t
t0

�

.
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The utility function U (·) is homothetic if (and only if) we can write the expenditure function
as E (u;p) = P (p) · F (u), for some unit expenditure function P (·) and some canonical homoth-
etic cardinalization F (·) of utility (Diewert, 1993). Correspondingly, from Definition 2, the true
price index P b

t0,t (c) between any two time periods t0 and t takes the same value independent of
the level of real consumption c and the choice of the base period b . Equation (4) then simplifies
to12

c b
t

c b
t0

=
yt/yt0

P b
t0,t (c)

, for any c and for any b , (5)

implying that any we can deflate nominal consumption growth by the true index between the
initial and final periods for any level of real consumption.

2.1.2 Price Index Formulas

The indices defined in Section 2.1.1 are structural, in the sense that they require the knowledge of
the underlying consumer preferences. In contrast, standard price index formulas can be computed
only in terms of observed expenditures and prices. An index formula is a positive-valued function
P
�

pt0
,st0

;pt ,st

�

of a pair of initial and final vectors of prices and expenditure shares, which
aggregates the changes in a vector of prices and quantities into a single index. The most common
examples include Laspeyres PL, Paasche PP , and geometric PG indices, which only use one vector
of expenditure shares in the initial or final periods:

PL ≡
∑

i

si ,t0

�

pi ,t

pi ,t0

�

, PP ≡
�

∑

i

si ,t

�

pi ,t0

pi ,t

��−1

, PG ≡
∏

i

�

pi ,t

pi ,t0

�si ,t0

, (6)

where we have suppressed the argument
�

pt0
,st0

;pt ,st

�

to avoid repetition. As is well-known, the
above indices do not account for the substitution effects that change the composition of expendi-
ture between the two periods. Important alternatives that use both initial and final expenditure
shares and account for substitution effects include the Fisher PF , Törnqvist PT , and Sato-Vartia
PS index formulas defined as

PF ≡ (PP ·PL)
1
2 , PT ≡

I
∏

i=1

�

pi ,t

pi ,t0

�sT ,i

, PS =
∏

i

�

pi ,t

pi ,t0

�s S,i

, (7)

where Fisher index is the geometric mean of the Lasypeyres and Paasche, and where the Törnqvist
weights are defined as sT ,i ≡

1
2

�

si ,t0
+ si ,t

�

and the Sato-Vartia weights are proportional to s S,i ∝

12Homotheticity is a necessary and sufficient condition for the true price index P b
t0,t (c) to be independent of c

and for the growth in real consumption c b
t /c b

t0
to be independent of the base b . Samuelson and Swamy (1974) refer

to this result as the homogeneity theorem.
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si ,t /si ,t0

log(si ,t /si ,t0)
and sum to 1. As we will see in Section 2.3 below, we can rely on these index formulas

to approximate the true price index and real consumption growth.

2.2 Exact Measurement of Welfare Change under Nonhomotheticity

In this section, we show how to construct the mapping χ b
t (·) from real consumption to total

expenditure, given observable functions that characterize the evolution of expenditure shares
ωt (·) and prices pt . We first use the paths of prices and the expenditure share function to define
a Divisia function Dt (·) of total expenditure at time t as

log Dt (y)≡
∑

i

ωi ,t (y)
d log pi t

d t
. (8)

The following proposition shows that the knowledge of this function is sufficient to fully char-
acterize the evolution of the mapping χ b

t (c), and it thus summarizes all the information in the
demand function that is relevant to recovering real consumption over time.13

Proposition 1. Consider a path of prices pt and preferences that lead to the Divisia function Dt (·)
over the interval [0,T ]. The mappingχ b

t (·) from real consumption to total expenditure is the solution
to the following partial differential equation with the boundarycondition χ b

b (c) = c:

∂ logχ b
t (c)

∂ t
= log Dt

�

χ b
t (c)

�

. (9)

In addition, for any path of total nominal expenditure yt over the interval, the growth in real con-
sumption, defined under period-b constant prices, at any point in time satisfies

d log c b
t

d t
=
�

∂ logχ b
t

�

c b
t

�

∂ log c b
t

�−1

×
�

d log yt

d t
− log Dt (yt )

�

. (10)

Proof. From Definition (2), we know that everywhere along the path, the total expenditure is
equal to the mapping χ b

t (·) evaluated at the corresponding level of real consumption, i.e. yt =
χ b

t

�

c b
t

�

= E
�

M−1
b (c) ;pt

�

. Equation (9) follows from

∂ logχ b
t (c)

∂ t
=
∑

i

∂ log E
�

M−1
b (c) ;pt

�

∂ log pi t

·
d log pi t

d t
=
∑

i

ωi ,t

�

χ b
t (c)

�

·
d log pi t

d t
,

13Appendix A.1 shows that Proposition 1 is a direct consequence of the integrability of the demand system charac-
terized by the expenditure share functionωt (·). For completeness, Appendix A.2 characterizes the inverse mapping
from total expenditure to real consumption, which we call the real consumption function.
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where in the second equality we have used Shephard’s lemma.
We can now write the full time derivative of the total expenditure as

d log yt

d t
=
∂ log E

�

M−1
b (c) ;pt

�

∂ t

�

�

�

�

�

c=c b
t

+
∂ log E

�

M−1
b (c) ;pt

�

∂ log c

�

�

�

�

�

c=c b
t

·
d log c b

t

d t
,

which leads to Equation (10) after rearranging terms, since the first term on the right hand side
equals log Dt (yt ). Intuitively, this equation shows that the change in nominal expenditure is
the sum of two terms: (i) price changes holding real consumption constant; (ii) the change in
real consumption interacted with the change in the curvature of the expenditure function as real
consumption changes.

To draw insights from Proposition 1, let us first consider the case of homothetic preferences.
In this case, the composition of demand is independent of expenditure and we have Dt (y)≡ Dt

for all y. Hence, Equation (9) implies that along the path we have

logP b
b ,t (c) = logχ b

t (c)− log c =
∫ t

b
log Dτ dτ, ∀b , c .

The integral on the right hand side defines the standard Divisia price index, which gives the
true price index under the homotheticity assumption. Beyond the homothetic case, as is well-
known, this integral does not necessarily offer a price index that is theoretically consistent (Hul-
ten, 1973).14 Proposition 1 shows that the theory-consistent way to recover the true price index
under nonhomotheticity is to integrate the Divisia function using the differential equation (9):

logP b
t0,t (c) = logχ b

t (c)− log c =
∫ t

t0

log Dτ

�

χ b
τ (c)

�

dτ, ∀b , c . (11)

The second insight of Proposition 1 is to show that we can account for the contribution of
nonhomotheticity using a simple multiplicative factor rescaling the standard formula that de-
flates nominal expenditure growth by the Divisia index, d

d t log yt − log Dt (yt ). Let us define the
nonhomotheticity correction function Λb

t (·) as the elasticity of the true index to real consumption
from the base period to the current period, that is,

Λb
t (c)≡

∂ logP b
b ,t (c)

∂ log c
=
∂ logχ b

t (c)
∂ log c

− 1, (12)

14For instance, the integral may take different values between the two initial and final periods depending on the
path of expenditure shares considered between the two periods.
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so that the multiplicative factor in Equation (10) is given by
�

1+Λb
t (ct )

�−1. Under homothetic
preferences, this nonhomotheticity correction is zero Λb

t (c) ≡ 0 and we recover the standard
result. Otherwise, we have to account for the deviation of the nonhomotheticity correction
function Λt from zero in Equation (10). Of course, if prices don’t change over time then we still
find Λb

t (c) = 0.
As we move forward in time from the base period t > b , Equation (12) shows that the

nonhomotheticity correction rises if the cost-of-living price index, from the base to the cur-
rent period, is higher at higher levels of real consumption. In such cases, raising one’s real con-
sumption is becoming more expensive over time, and thus the exact measure of real consump-
tion growth is smaller than with the uncorrected deflation of nominal consumption growth,
d
d t log yt− log Dt (yt ). In contrast, if the true price index is higher at lower levels of real consump-
tion, raising one’s real consumption is becoming less expensive over time, and thus the exact
measure of real consumption growth exceeds what is suggested without correction.15

When does the nonhomotheticity correction require a sizable adjustment to the standard
uncorrected approach? First, by definition the nonhomotheticity correction is small when the
current period t is close to the base period b , so that the true indexP b

b ,t (c) is small. Second, the
dependence of the index on real consumption stems from systematic differences in price changes
across goods as a function of their income elasticities. Indeed, we can re-write the nonhomoth-
eticity correction as16

Λb
t (c) =

∫ t

b

∑

i

�

ωi ,τ

�

χ b
τ (c)

�

·ηb
i ,τ (c) ·

d log piτ

dτ

�

dτ,

where ηb
i ,t (c)≡

∂ logωi ,t(χ b
τ (c))

∂ log c denotes the elasticity of expenditure shares with respect to real con-

sumption. Thus, the nonhomotheticity correction is zero if price inflation d log piτ
dτ is uncorrelated

with income elasticities ηb
i ,τ (c) across goods i , even if the average size of price inflation is large.

We conclude that the nonhomotheticity correction is likely to be sizable when preferences are
nonhomothetic, price inflation is large and correlated with income elasticities across goods, and
real consumption is expressed in terms of a base period that is distant from the current period.

Most importantly, Proposition 1 allows us to uncover real consumption over time by ap-
proximating the Divisia index function log Dt (y) using the cross-sectional variations in the price
indices across households. Before presenting this result in Section 2.3, below we present a number
of other theoretical implications of Proposition 1.

15We provide intuition for this result with examples at the end of this section.
16We note that the importance of the covariance between income elasticities and price changes for measuring

welfare change in presence of nonhomotheticity has been highlighted in prior work (e.g., Fajgelbaum and Khandel-
wal, 2016; Atkin et al., 2020; Baqaee and Burstein, 2021). The main insight of our work is how to use this result to
nonparametrically uncover the measures of welfare change based on cross-sectional data.
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Real Consumption Growth and the Choice of Constant Prices How does the choice of the
base period affect the measurement of growth in real consumption? The following lemma shows
that there is a systematic relationship between the choice of the base period and the corresponding
measure of real consumption.

Lemma 1. Consider two base periods b1 < b2. At time t , the rate of growth in real consumption
measured with constant prices in period b2, relative to real consumption with constant prices in period
b1, satisfies

d log c b2
t

d log c b1
t

= 1+Λb1
b2

�

c b1
t

�

= 1+
∂ logP b1

b1,b2
(c)

∂ log c

�

�

�

�

�

c=c b1
t

. (13)

Proof. See Appendix A.5.

Lemma 1 shows that the sign of the bias induced by the nonhomotheticity correction inher-
ently depends on the choice of the base period.17 More specifically, it shows that the gap between
measures of growth at time t using two different base periods, b1 and b2, depend on the nonho-
motheticity correction between the two periods b1 and b2. For instance, assume b1 < b2, prices
are on the rise, and price inflation negatively covaries with income elasticities across goods be-
tween periods b1 and b2. In this case Λb1

b2
< 0, and by Equation (13) real consumption growth is

lower when measured from the perspective of the later period b2.
To gain intuition about the economics behind this result, let us consider a simple economy

with two goods: burgers and mobile phones. Assume that mobile phones are more income
elastic than burgers and that over a period of time, for example from 1970 to 2020, the relative
price of mobile phones falls substantially relative to burgers. From the perspective of prices held
constant at their 1970 level, real consumption growth over this fifty-year period is larger when
preference nonhomotheticity is taken into account. The reason is that consumers become richer
over time, which leads to an increase in the propensity to spend on mobile phones, precisely
when the relative price of mobile phones is falling. Thus, in this example conventional measures
of real consumption growth are biased downward because they do not account for the fact that
the income-elastic goods become relatively cheaper at the same time as they become relatively
more important from the point of view of consumer preferences.

In contrast, looking backward in time from the perspective of prices held fixed at a later
period, for example 2020, real consumption growth during the period is smaller when account-
ing for the nonhomotheticity correction. Indeed, going backward in time, consumers become
poorer and spend relatively more on the income-inelastic good, burgers, which become relatively
cheaper. Thus, the fall in income is dampened by the fact that burgers are relatively cheaper while

17To the best of our knowledge, this point has not been made in prior work on measuring welfare change in the
presence of preference nonhomotheticity.
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consumer demand for burgers has increased. Therefore, consumers in the past were richer than
typically thought, i.e. conventional measures of real consumption growth are biased upward.

These examples illustrate how the curvature of the mapping between welfare and our money-
metric depends inherently on the choice of the base period. Regardless of the choice of the base
period, in the examples above the level of real consumption is always underestimated by the
standard measures, all the more so as we move away from the base period.18

Characterization of the Real Consumption Function Proposition 1 characterizes the map-
ping from real consumption to total expenditure at any point in time. Since this mapping is
monotonic, it also fully characterizes the inverse mapping eχ b

t (y)≡
�

χ b
t

�−1 (y), from total expen-
diture to real consumption, which we may refer to as the (indirect) real consumption function.
Substituting for c = eχ b

t (y) in Equation (11), we find the following integral representation for this
function:

log eχ b
t (y) = log y − log Dτ

�

χ b
τ

�

eχ b
t (y)

��

dτ. (14)

Appendix A.2 derives a direct characterization of this mapping as the solution to a first-order
hyperbolic partial differential equation, and discusses its connection with the differential equa-
tion (9). The appendix further discusses how we may use this representation of the differential
equation (9) to construct other alternatives to our approach for approximating real consumption
based on cross-sectional data.19

2.3 Approximating Welfare Changes under Nonhomotheticity

Proposition 1 characterizes a theoretically consistent measure of real consumption as the solution
to a differential equation expressed in terms of the Divisia function. This function in turn tells
us how the true price index depends on total expenditure. In this section, we build a number
of different approximate solutions to this differential equation using data on prices and repeated
cross-sections of household expenditures. The key insight is that classical index number theory
allows us to approximate the Divisia function for any underlying preferences, based on cross-
sectional variations in price indices across households as a function of their total expenditure.

18Another application of the insight that measured growth depends on the vector of fixed prices bas recently been
provided by Oberfield (2022). He constructs a general equilibrium growth model that features a U-shaped pattern
of inflation inequality (as a function of household income) along the constant growth path. Along such paths, the
rates of growth in real consumption, when measured in terms of a base period far in the past or one far in the future,
are equal across households. In contrast, when measured in terms of the current base period, these rates take higher
values and feature inequality across households.

19For example, Baqaee et al. (2022) have subsequently used the integral representation in Equation (14) to construct
an alternative algorithm to ours for approximating real consumption using cross-sectional household-level data. We
study the properties of their approach in relation to ours in Appendix A.3.3.
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2.3.1 Setting for the Approximation

As in Section 2.1.1, we consider continuous paths for prices and expenditures in some fixed time
interval, but now additionally assume that the data only provides us with T + 1 discrete obser-
vations along this path. Without loss of generality, we denote the end period by the integer T
and let t ∈ {0,1, · · · ,T } denote the time index of each observation. Since the paths of prices
and expenditure are fixed, we assume that the following bounds on price inflation and nominal
expenditure growth increasingly vanish as we increase the number of observations T + 1:

∆p ≡max
i ,t

¨
�

�

�

�

�

log

�

pi ,t+1

pi ,t

�
�

�

�

�

�

«

, ∆y ≡max
t

�

�

�

�

�

log

�

yi ,t+1

yi ,t

�
�

�

�

�

�

. (15)

We use the bounds above to introduce the concepts needed for constructing our approxi-
mation error bounds. Consider two sequences { ft}

T
t=0 and {gt}

T
t=0 defined as functions of the

observed sequences of price and expenditures along the path. As the number of observations
T + 1 and the bounds in Equation (15) change, the values of the two sequences also change.

Let us denote the corresponding mapping between the size of the bound ∆, where ∆ =
max{∆p ,∆y}, and the values of the two sequence as ft ≡ ft (∆) and gt ≡ gt (∆).

20 Now, we
define the sequence ft as an m-th order approximation of the sequence gt , and denote this by
ft − gt =O

�

∆m+1
�

, if the differences between the values of the two sequences fall in magnitude
with ∆m+1 as T grows. Formally, this relation holds if lim∆→0 ( ft (∆)− gt (∆))∆

−(m+1) = a for
some finite constant a > 0.

For the key results presented in Section 2.3.3 below, we make the additional assumption that
in each period we observe the composition of consumption expenditures for N consumers or
households with identical preferences characterized by a continuously differentiable expenditure
function, E (u;p). They face the same sequence of prices and have heterogeneous levels of total
expenditures, satisfying the bounds in Equation (15).

2.3.2 Index Formulas as Approximations for the True Index

We begin with a lemma that shows the sequences of geometric and Törnqvist price indices be-
tween successive time points approximate the corresponding sequence of true price indices up to
first and second orders, respectively.21

20Note that this definition involves a slight abuse of notation, since the sequence is a function of all observations
of prices, expenditures, and expenditure shares.

21As we discuss in Section 2.3.5, we can generalize this result for broader classes of index formulas defined in
Section 2.1.2. Lemma 2 closely parallels the results of Diewert (1976), who shows that the Törnqvist price index is
exact for the translog family of expenditure functions.
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Lemma 2. Assume that the underlying expenditure function E (·; ·) characterizing choices (pt ,st , yt )
and

�

pt+1,st+1, yt+1

�

is third-order continuously differentiable in all its arguments. Then, if the cor-
responding changes in prices and total expenditures satisfy Equation (15), the geometric and Törnqvist
price index formulas satisfy

logP b
t ,t+1 (c) = logPG

�

pt ,st ;pt+1,st+1

�

+O
�

∆2� , if c ∈
�

c b
t , c b

t+1

	

, (16)

= logPT

�

pt ,st ;pt+1,st+1

�

+O
�

∆3� , if c =
q

c b
t · c b

t+1, (17)

where ∆ ≡ max
¦

∆p ,∆y

©

and where c b
t =

�

χ b
t

�−1 (yt ) denotes the level of real consumption corre-
sponding to choice (pt ,st , yt ).

Proof. See Appendix A.5.

Recall that under homotheticity, the true price index does not depend on the level of real
consumption c . As the proof of the lemma shows, under homotheticity the lemma holds for any
level of real consumption c and with a tighter bound∆≡∆p . In this case, the sequences of geo-
metric and Törnqvist indices provide us with approximations of the Divisia index, which we can
chain over time to integrate the Divisia index and approximate any true price index logP b

t0,t (c).
Thus, in the case of homothetic preferences, the error in the chained indices over the entire fixed
interval, depending on whether the geometric or Törnqvist formula is used, is first or second
order.22

In the presence of nonhomotheticity the lemma shows that approximations remain valid only
for local levels of real consumption, in the sense that they are close to c b

t and c b
t+1. Thus, chaining

geometric and Törnqvist indices does not lead to a theoretically-consistent measure of the true
price index over the entire interval. As we will see next, however, we can still rely on the insights
of Proposition 1 to approximate the true price index.

2.3.3 Approximating the Nonhomotheticity Correction Function: First-Order Approach

We now present the central contribution of this paper, the algorithm that approximately con-
structs consistent measurement of real consumption over time using repeated cross-sectional data.

Intuition We first describe the intuition underlying our approach, which proceeds in two steps.
In the first step, we use Lemma 2 to approximate the true price index across successive time
periods for different consumers with different levels of expenditures y. This step allows us to
approximate the Divisia index as a function of total expenditure, Dt (y) . In the second step, we

22The lemma implies the error bounds O
�

T ·∆2
�

and O
�

T ·∆3
�

for the chained geometric and Törnqvist formu-
las, respectively. Note that since we keep the interval and the overall true index fixed, we have T −1 =O (∆).
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use Proposition 1 to recover real consumption in all periods. We start from the initial condition
χ b

b (c) = c and use the observed, period-specific Divisia index as a function of total expenditure,
Dt (y), to numerically integrate the differential equation (9). Doing so from the base period b
across successive periods, we obtain an approximation for the mapping χ b

t (c) and the true price
indexP b

b ,t (c). We can implement this algorithm going forward or backward in time, depending
on the choice of the base period.

Algorithm We begin with a first-order algorithm that relies on geometric index formulas to
construct an approximation of the nonhomotheticity index and real consumption growth. Let
πn

t denote the geometric index formula for consumer n from period t to period t + 1:

πn
t ≡ logPG

�

pt ,s
n
t ;pt+1,s

n
t+1

�

, (18)

where sn
t is the vector of consumption expenditures for consumer n at time t . Starting in the

base period t = b , we have χ b
b (c)≡ c and thus the real consumption for each consumer is equal

to their observed total expenditure bc n
b = c n

b = yn
b , where we omit the superscript b indicating the

base year to simplify notation, and where we indicate our estimated value of real consumption at
time t by bc n

t . From Lemma 2, we know thatPb ,b+1

�

c n
b

�

≈πn
b . Thus, we can use a nonparametric

model to fit a smooth function to the observed household-level relationship between the true
price index and real consumption, leading to an estimated function cPb ,b+1 (·). This allows us to
compute an approximation for the nonhomotheticity correction bΛb+1 (·) as the elasticity of the
estimated function cPb ,b+1 (·) with respect to consumption, following Equation (12). Using this
correction in Equation (10), we find an approximation for the values of real consumption across
consumers in the next period from (for t = b ):

logbc n
t+1 = logbc n

t +
1

1+ bΛt+1 (bc n
t )

�

log
�

yn
t+1

yn
t

�

−πn
t

�

. (19)

The following algorithm successively applies this procedure to construct the sequence of values
of real consumption for consumers in all periods going forward in time. The application of the
algorithm backward, from period b for periods t < b , follows analogous steps.

Algorithm 1 (Baseline First-Order Algorithm). Consider a sequence of power functions { fk(z)≡
zk}KN

k=0 for some KN , where N is the number of consumers in the cross-section.23 Let bc n
b ≡ yn

b and for
each t ≥ b , successively apply the following two steps.

23One can apply alternative series-function approximations, using alternative basis functions such as Fourier,
Spline, or Wavelets. The results here generalize to such alternative nonparametric methods subject to modified regu-
larity assumptions on the expenditure function and the distribution of real consumption across consumers (Newey,
1997).
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1. Nonparametrically fit the true price index between periods t and t + 1:

Estimate the coefficients
�

bαk ,t

�KN

k=0
solving the following problem:

min
(αk ,t)

K

k=0

N
∑

n=1

�

πn
t −

KN
∑

k=0

αk ,t fk (logbc n
t )
�2

, (20)

where {πn
t }n are household-specific price index formulas at time t defined by Equation (18).

2. Estimate the values of real consumption for consumers in period t + 1:

Use Equation (19), where the approximate nonhomotheticity correction function is given by

bΛt+1 (c)≡
KN
∑

k=0

�

t
∑

τ=b

bαk ,τ

�

f ′k (log c) . (21)

Step 1 in Algorithm 1 constructs an approximation for the true price index cPt ,t+1 (·). The
integration of the true price index between the base period b to current period t implies that

log cPb ,t+1 (c)≡
t
∑

τ=b

log cPτ,τ+1 (c) =
KN
∑

k=0

�

t
∑

τ=b

bαk ,τ

�

f k (log c) , (22)

which then allows us to compute an approximation for the nonhomotheticity correction from
Equation (21).

In practice, the algorithm is easy to implement and consists of two steps: (i) running a se-
quence of period-by-period OLS regressions, as in Equation (20); (ii) summing up period-specific
OLS coefficients from the base to the current period, as in Equation (22). We thus obtain the
nonhomotheticity correction at each point in time.

2.3.4 Extensions

In this section, we discuss three important extensions of the baseline first-order Algorithm 1.

Alternative Algorithms Our baseline first-order Algorithm 1 approximates the solution to
the problem characterized in Proposition 1 using cross-sectional data on household expenditure.
As already discussed, we can use the same insight to construct many alternative approximations
for the solution to this problem.

For instance, we may rely on the results of Lemma 2, which shows that the Törnqvist index
formula yields a more precise local approximation of real consumption, to construct a second
order approximation for real consumption growth over long time horizons. Algorithm A.1 in
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Appendix A.3 uses an iterative structure to achieve this second order approximation. Unlike the
case of Algorithm 1, which evaluates the nonhomotheticity correction only at current period’s
level of real consumption bΛt+1 (bct ) to approximate the real consumption growth ct+1/ct , our
second-order algorithm additionally evaluates the nonhomotheticity correction function at next
period’s level of real consumption bΛt+1

�

bct+1

�

. As a result, the algorithm further involves solving
for a fixed-point problem in each period to update the value of real consumption in successive
periods. In Section 2.4 below, we show that this second-order algorithm indeed leads to smaller
approximation errors compared to the first-order approach.

Both Algorithms 1 and A.1 approximate the nonhomotheticity correction as the inverse of
the elasticity of the mapping χ b

t (c) from expenditure to real consumption. We favor this ap-
proach as it intuitively and transparently establishes the link between cross-household inequality
in cumulative inflation and the nonhomotheticity correction. However, an alternative approach
is to approximate the nonhomotheticity correction as the elasticity of the inverse mapping eχ b

t (y).
This approach may lead to better analytical properties, since we approximate the derivative of the
estimated function with respect to a variable that is observed in the data, rather than containing
approximation error.24 Appendix A.3.2 provides first and second order algorithms based on this
alternative approach. Propositions A.1 and A.2 in Appendix A.3 then provide bounds for the
approximation error of these two algorithms. We find that in the limit where KN → ∞ and
K7

N/N → 0, the sequence of the first-order approximations bc n
1,t and the second-order approxima-

tions bc n
2,t satisfy25

log
�

c n
t+1

c n
t

�

= log

�

bc n
1,t+1

bc n
1,t

�

+O
�

∆2� ,

= log

�

bc n
2,t+1

bc n
2,t

�

+O
�

∆3� .

Finally, as another example, subsequently to our work Baqaee et al. (2022) have presented
a different alternative to our first-order algorithms. In Appendix A.3.3, we establish that their
algorithm relies on the same insight as ours, showing that their algorithm implicitly accounts
for the nonhomotheticity correction by approximating the integral equation (14). We provide
evidence using both synthetic and real-world data that in practice their approach leads to results
that are fairly similar to those produced by our baseline first-order Algorithm 1, while our second-
order algorithm is much more precise.

24In practice, we find that the two approaches lead to similar results in the case of synthetic data (Appendix B.2)
and real U.S. data (see Section 3 and Appendix Figure D.9).

25Propositions A.1 and A.2 in Appendix A.3 provide more general error bounds for finite values of KN .
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Alternative Price Index Formulas We can generalize the results of Lemma 2 and Propositions
A.1 and A.2, and thus the first- and second-order algorithms 1 and A.1, to index formulas beyond
geometric and Törnqvist. The following Proposition states this result formally.

Proposition 2. If the expenditure function E (·; ·) is second-order continuously differentiable in all
its arguments, then the price index formulas defined in Section 2.1.2 satisfy

logPG

�

pt ,st ;pt+1,st+1

�

= logPI

�

pt ,st ;pt+1,st+1

�

+O
�

∆2� , I ∈ {P, L,T , F , S} ,

logPT

�

pt ,st ;pt+1,st+1

�

= logPI

�

pt ,st ;pt+1,st+1

�

+O
�

∆3� , I ∈ {F , S} ,

where∆≡max
¦

∆y ,∆p

©

with∆y and∆p defined as in Equation (15).

Proof. See Appendix A.5.

One implication of Proposition 2 is the classification of price index formulas into two groups:
the first group (composed of geometric, Laspeyres, and Paasche index formulas) provides a first-
order approximation to the true price index, while the second group (composed of Törnqvist,
Fisher, and Sato-Vartia) provides a second-order approximation. To reflect the accuracy of the
approximations for each group, we refer to the first group of index formulas as first-order index
formulas and to the second group as second-order index formulas.

It follows that the results of Lemma 2 and Propositions A.1 and A.2 for first and second order
approximations extend to any formulas in the first and second order family of indices, respec-
tively. For instance, the Sato-Vartia or the Fisher index between periods t and t+1 approximates
the true price index between these two points for the corresponding level of real consumption
specified in Lemma 2. Moreover, we can replace the Törnqvist index with the Sato-Vartia or
Fisher index in our second-order Algorithm A.1, and the same error bounds characterized in
Proposition A.2 apply.

We rely on these extended results in our empirical exercise in Section 3 where, due to data
limitations, the most natural choice for a second-order index is the Fisher index.

Observable Heterogeneity in Consumer Characteristics Our method requires that we can
infer the relationship between the true price index and total expenditure from the cross-household
relationship between price index formulas and total expenditures (e.g., Step 1 of Algorithm 1).
However, the observed relationship between household-level price indices and household expen-
ditures may in principle be confounded by other factors, for example household age or education.
To alleviate this potential concern, we can (nonparametrically) control for observable covariates
in this step of the algorithm. However, to build a theoretically consistent account of the potential
dependence of consumer preferences on characteristics beyond income, we need to generalize our
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concept of real consumption. As we will discuss in Section 4 below, such a generalization leads to
further corrections in our standard measures of real consumption, beyond the nonhomotheticity
correction, in order to account for the impact of potential changes in consumer characteristics
on consumer welfare over time. As discussed in Section 4, we empirically find that the results
from our baseline algorithm are robust to this extension.

2.3.5 Discussion

As discussed above, Lemma 2 and Proposition 2 together classify common price index formulas
into two first- and second-order groups, based on the accuracy of the approximations they provide
for true price indices under arbitrary underlying preferences. Our approach thus differs from the
standard treatment of index formulas, which classifies index formulas based on the underlying
family of preferences for which they provide exact measures of true price indices (Diewert, 1993).
For instance, the Törnqvist price index is exact for the family of preferences that lead to a translog
unit cost function.26 Unlike our approach, the concept of exact price indices requires specifying
the underlying form of the preference functions.

One crucial step is to define, as in Diewert (1976), the Fisher and Törnqvist price indices as
superlative price indices, on the grounds that they are exact for families of preferences that can
provide a second-order approximation to other homothetic preferences, namely the quadratic
and the translog family, respectively. In line with this insight, Diewert (1978) has shown that
alternative choices of superlative indices, when chained, lead to very similar estimates for the
changes in cost-of-living and real consumption in practice. Lemma 2 and Proposition 2 formalize
these classical insights and generalize them to include the Sato-Vartia index. Instead of establishing
the exactness of different index formulas for distinct families of preferences that may approximate
general preferences, the lemma provides bounds on the approximation error of the reduced-form
indices for arbitrary preferences.27

As mentioned, these classical results do not allow us to provide precise approximations of real
consumption growth over long time horizons beyond the case of homothetic preferences.28 By
solving this problem, Algorithm A.1 and Proposition A.2 in Appendix A.3 offer a substantial
generalization of index number theory to nonhomothetic preferences.

26As for other examples, the Laspeyres and Paasche indices are exact for Leontief utility functions, and the geo-
metric and Sato-Vartia index formulas are exact for Cobb-Douglas and CES utility functions. The Fisher price index
is exact for the family of preferences that lead to quadratic unit cost functions.

27In line with Equation (17), Diewert (1976) shows that the Törnqvist index is exact for the family of nonho-
mothetic preferences characterized by a translog expenditure function, for the true index under the level of real
consumption specified in Lemma 2.

28Samuelson and Swamy (1974) discuss several examples of such results and provide examples that show how they
fail under nonhomotheticity.
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2.4 Simulation

In this section, we perform a simple simulation to illustrate and validate the accuracy of our
algorithms in accounting for the effect of nonhomotheticity when measuring real consumption
growth.

Comin et al. (2021) have shown that the nonhomothetic CES (nhCES) preferences lead to
a demand system compatible with the cross-sectional relationship between household income
and the composition of expenditure among three main sectors of the economy: agriculture,
manufacturing, and services. Following their specification, we assume that the expenditure func-
tion satisfies:

E (u;pt )≡

 

∑

i∈{a,m,s}
ψi

�

uεi pi ,t

�1−σ

!
1

1−σ

. (23)

We use the same parameters as in Comin et al. (2021): (σ ,εa,εm,εs ) = (0.26,0.2,1,1.65), implying
that services are luxuries (income elasticities exceeding unity) and agricultural goods are necessi-
ties (income elasticities lower than unity). We consider a population of a thousand households
with an initial distribution of expenditure with a log-normal distribution, specifying a mean cor-
responding to the average US per-capita nominal consumption expenditure of $3,138 in 1953 and
a standard deviation of log expenditure of 0.5 (Battistin et al., 2009). We consider a horizon of
70 years and assume that over this horizon nominal expenditure grows at the constant rate of
4.48% per year, in line with the US data from the period 1953-2019. In each of the cases discussed
below, we choose the fixed sectoral demand shifters ψi in Equation (23) in such a way that in
the first period the composition of aggregate expenditure fits the US average shares of sectoral
consumption in the three sectors in 1953.29

To examine the role of the covariance between price inflation and income elasticities, we
consider a simple, purely illustrative simulation. We set the inflation rate in the manufacturing
sector to be the average inflation rate in the US over the period 1953-2019 of 3.19%. We then
consider two illustrative cases featuring either positive or negative covariances between inflation
and income elasticities. To study the case with a positive covariance, the inflation rate is set to
be 1pp higher in service and 1pp lower in agriculture compared to manufacturing, leading to the
inflation rates of 4.19% in services and of 2.19% in agriculture. To illustrate the case of a negative
covariance, we reverse these parameters, setting inflation rates to 2.19% in services and 4.19% in
agriculture. The resulting rates of growth in average real consumption in the simulated data in
the positive, zero, and negative covariance cases are 0.7%, 1.3%, and 1.9% per year, respectively.

Given the known structure of underlying preferences, this example allows us to compute the

29The corresponding shares in the US based on the BLS data are 0.14, 0.27, and 0.59 for agriculture, manufacturing,
and services, respectively.
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Figure 1: Illustrative Simulation of the Evolution of Average Real Consumption

(a) Positive Ccovariance/initial base (b = 0) (b) Positive covariance/final base (b = 70)

(c) Negative covariance/initial base (b = 0) (d) Negative covariance/final base (b = 70)

Note: The figures compare the evolution of the true value of average real consumption with two different approaches to approximating this
value: 1) the average of the uncorrected nominal real consumption growth deflated by household-specific geometric price indices, and 2)
applying the nonhomotheticity correction using the first-order algorithm. The panels show the resulting series for the choices of base period
(a) b = 0 and (b) b = 70 with a positive income elasticity-inflation covariance and (c) b = 0 and (d) b = 70 with a negative covariance.

true values of real consumption for each household and assess the accuracy of our algorithms.
Relying only on the simulated data, we also apply the standard, uncorrected deflation of nominal
consumption expenditure for each household to assess the magnitude of the bias in uncorrected
measures.

Figures 1a-1d report the results. We compare the evolution of the average measures of real
consumption across the simulated population over time with the two different approximations.
First, we see that the conventional approach based on chaining uncorrected measures of nominal
expenditure growth deflated by the Törnqvist index leads to sizable bias depending on the choice
of the base period and/or the covariance between price inflation and income elasticities. While

24



errors accumulate in the uncorrected chained values, applying our first-order nonhomotheticity
correction yields results that are virtually indistinguishable from the true evolution of real con-
sumption found based on the underlying preferences. Thus, our approach accurately recovers
the evolution of the true index without the knowledge of the parameters of the demand system.

In Appendix B, we provide an illustration of the evolution of the expenditure function in our
simulation over time, and compare it against a homothetic benchmark. This analysis demon-
strates how changes in the curvature of the expenditure function translate into biases in the
uncorrected measures of real consumption growth. The appendix further provides a detailed
analysis of the size of the approximation error under our first and second order approaches, and
extends the simulation to a wider range of values for the covariance between price inflation and
income elasticities. Appendix B.2 provides additional simulation results, documenting the ac-
curacy of our alternative algorithms based on the real consumption function, and reporting the
performance of the baseline algorithms depending on the degree of the polynomials used in the
regression steps.

3 Empirics

In this section, we apply our approach to data from the US and quantify the magnitude of the
bias in conventional measures of real consumption growth.

3.1 Data and Descriptive Statistics

Data To assess the empirical importance of the nonhomotheticity correction, we build a dataset
providing total expenditures and expenditure shares at a granular level, across 598 items from
the Consumer Expenditure Survey (CEX). These items, called Universal Classification Codes
(UCC), are defined by the BLS and cover the entire consumption basket of households in the
United States. We obtain price changes for each item using CPI price series combined with the
official concordance provided by BLS for active UCCs, which we extend manually in prior years
for UCCs that were discontinued. Appendix C provides a complete description of the data con-
struction steps.

Using the CEX micro-data, we obtain expenditure patterns and socio-demographic charac-
teristics at the household level. We then aggregate the household-level data to the level of pre-tax
income percentiles. We thus obtain expenditure patterns that vary across income percentiles,
which we will use to compute the income elasticity of inflation. We also use this dataset to mea-
sure consumption growth rates across income percentiles. To ensure that the patterns of con-
sumption are consistent with national accounts at the aggregate level, we reweigh the data series
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so that aggregates in our data match the official aggregate personal consumption expenditures
provided by the Bureau of Economic Analysis (BEA).30 Our analysis is thus fully consistent with
macroeconomic aggregates and extends the logic of the distributional national accounts (Piketty
et al. (2018)) to a setting allowing for the computation of inflation inequality.

Prior to 1984, the data require special treatment since CEX household-level data and CEX
expenditure summary tables by product category and socio-demographic groups are no longer
available, except in two years, 1972 and 1960. We use these two data points to interpolate the
data for missing years. Prior to 1960, we use our first-order approximation to the correction for
nonhomotheticities to extrapolate expenditure shares back to 1955, and we obtain the growth
rate of aggregate consumption expenditures from the BEA.31 Given the data limitations prior to
1984, we present two sets of results, first focusing on the period from 1984 to 2019 for which
high-quality CEX data is available annually, and then a longer historical analysis going back to
1955.

Descriptive inflation statistics This new linked dataset allows us to provide evidence on in-
flation inequality over a long time horizon, thus extending prior estimates that have focused on
much shorter time series. Computing inflation using group-specific price indices, we find that
inflation inequality is a long-run phenomenon. Panels (a) and (b) of Figure 2 report aggregate
and heterogeneous inflation patterns between 1984 and 2019, using chained geometric price in-
dices. While panel (a) shows that the cumulative inflation rate with aggregate expenditure shares
is about 120%, panel (b) reports that inflation was higher for lower-income groups, ranging from
140% at the bottom to 110% at the top. Thus, over the course of these 35 years, a gap of around 30
percentage points has opened up in the chained geometric indices between the lowest and highest
income groups. This finding is consistent with the growing literature on “inflation inequality,”
the fact that inflation rates are higher for lower-income households (e.g., Kaplan and Schulhofer-
Wohl, 2017; Jaravel, 2019; Argente and Lee, 2021). While this literature focused on post-2000
patterns, our data shows that this trend persists over several decades.

Furthermore, Panels (c) and (d) extend the analysis back to 1955, showing that inflation in-
equality also existed over this longer time horizon. We find that on average over the 1955-2019
period, the annual inflation rate was about 35 basis points lower for the top relative to the bot-
tom of the income distribution. This sustained inflation difference leads to a gap of about 175
percentage points in cumulative inflation over the period, which varies from 700% at the top to
875% at the bottom of the income distribution. To the best of our knowledge, this paper is the

30See Appendix C for a detailed description of this step. As described in Appendix C, we also ensure that our
dataset perfectly matches the official CEX summary tables published by the BLS by product categories and income
quintiles.

31See Appendix C for a detailed description of this step.
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Figure 2: Descriptive Inflation Statistics

(a) Inflation with aggregate expenditures, 1984-2019 (b) Inflation by income percentiles, 1984-2019
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(c) Inflation with aggregate expenditures, 1955-2019 (d) Inflation by income percentiles, 1955-2019
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Note: This figure describes inflation patterns in our data. Panel (a) reports inflation from 1984 to 2019 using aggregate expenditure shares. Panel
(b) shows heterogeneity in cumulative inflation rates between 1984 and 2019 by pre-tax income percentiles. In this panel, price indices are built
using expenditure shares that are specific to each pre-tax income percentile. Panels (c) and (d) repeat the analysis for a longer period, from 1955
to 2019. All panels use chained geometric price indices.

first to build a dataset with disaggregated consumption patterns providing evidence on inflation
inequality for a period of nearly 65 years.

Online Appendix Figure D.1 reports additional descriptive patterns on the dynamics and
magnitude of inflation inequality over time.32 Inflation inequality was strongest after 1995, weak
between 1984 and 1995, and significant between 1955 and 1984.33

3.2 Main Estimates

Analysis from 1984 to 2019 We first implement Algorithm 1 using our main dataset and the
geometric price index formulas, leveraging the observed expenditure patterns and prices for each

32Note that, although the cumulative level of inflation inequality shown in Figure 2 is economically meaningful,
it is smaller than the deviations we considered in the illustrative example of Section 2.4.

33Explaining these patterns of inflation inequality falls beyond the scope of this paper, but we note that they are
consistent with several mechanisms that were proposed in recent work. For example, demand-driven theories of
directed innovation can lead to inflation inequality in period of sustained economic growth like the postwar period,
with a stronger effect when inequality is rising, like in the 1990s and 2000s (see Jaravel (2019)).
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income percentile from 1984 to 2019. As we saw in Section 2, the negative covariance between
household income and price indices shown in Figure 2 implies that the uncorrected measures
of real consumption should underestimate the values of real consumption under any fixed base
period. Indeed, this is what we find in panel (a) of Figure 3, which reports the bias in the average
level of average real consumption absent the nonhomotheticity correction under the initial and
the final periods as the basis for welfare comparisons.34,35

Using 1984 prices as base, we find that the level of average real consumption (per household)
is underestimated by about 1.5% in 2019. Mechanically, the bias in the level of real consump-
tion is very small in the first few years after 1984. It grows gradually as the negative covariance
between inflation and household income leads to a gradual change in the curvature of the ex-
penditure function relative to the base year. Likewise, the panel shows that, using 2019 prices as
base, the level of real consumption in 1984 is underestimated by about 3.2%. Thus, due to the
nonhomotheticity correction, at any point other than the base period we find that consumers
are actually better off than what is implied by standard uncorrected measures. Intuitively, when
we look into the past from the perspective of today’s prices, we observe that (i) households were
poorer thirty years ago and (ii) necessities were cheaper, which implies that consumer welfare
thirty years ago was higher than according to standard measures ignoring changes in the relative
price of necessities and luxuries. Symmetrically, looking at today’s economy from the perspec-
tive of prices in a distant period in the past, we observe that (i) households got richer and (ii)
luxuries got cheaper, therefore welfare is higher than with the conventional measure that does
not account for nonhomotheticity.

As shown in panel (a) of Figure 3, the nonhomotheticity bias affecting the level of real con-
sumption has the same sign regardless of the base year for prices. In contrast, the nonhomoth-
eticity bias in the growth of real consumption does depend on the choice of base year. To see
why, note that with 1984 prices as base, real consumption growth is underestimated, since real
consumption in the future is underestimated by the standard measure without nonhomotheticity
correction. Symmetrically, with 2019 prices as base, growth is overestimated since the level of
real consumption is underestimated in all past periods. Panel (b) of Figure 3 reports these results,
expressing the size of the bias as a share of measured growth.36 The biases are mechanically small

34Algorithm 1 is implemented using each pre-tax income percentile cell as one observation in the cross-section,
and we then average the results. We use a second-order polynomial (K = 2) and show in sensitivity analyses below
that the results remain similar for any K ≥ 1.

35As already mentioned, we report the measures of average real consumption across households as a way of sum-
marizing the results, without taking a stance on a welfare function (see footnote 5).

36For each income percentile n, the annual bias in real consumption is defined as the difference between the
uncorrected measure,∆ log yn

t −πn
t , and the corrected measure,∆ log c b ,n

t . Using Proposition 1, we thus define the

bias as λn
t ≡

∆ log yn
t −πn

t −∆ log c b ,n
t

∆ log yn
t −πn

t
= Λb

t (c)
Λb

t (c)+1
. We compute the bias for each percentile and then average over all income

percentiles.
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Figure 3: Nonhomotheticity Correction and Bias in Average Real Consumption, 1984-2019

(a) Bias in the Level of Real Cons. (b) Annual Bias in Real Cons. Growth
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Note: This figure report the biases in the level of average real consumption per household, in panel (a), and in annual growth in real consumption
per household, in panel (b). The bias is computed by applying Algorithm 1 to obtain the nonhomotheticity correction. We then compare
standard measures of real consumption to corrected measures. In panel (b), the bias is expressed as a percentage of the standard homothetic
measure of current-period growth. Algorithm 1 is applied to our main dataset at the level of pre-tax income percentiles, using geometric price
indices. We then average percentile-level results to obtain average real consumption per household.

close to the base year, but become larger for more distant years. With 1984 prices as base, the
standard measure underestimates real consumption growth by about 7.5% in 2019. Taking 2019
prices as base, the standard measure overestimates real consumption growth by approximately
7.5% in 1984.

It is also instructive to examine the disagreggated patterns for the nonhomotheticity correc-
tion across pre-tax income percentiles. Figure 4 plots these results. Panel A reports the bias in
annual growth in real consumption for each income percentile. Panel A(i) focuses on growth in
2019, with 1984 prices as base.37 We find that the correction is larger for low-income groups: the
annual growth in real consumption in 2019 is underestimated by 10% at the bottom of the in-
come distribution, and only by 4% at the top. Symmetrically, panel A(ii) shows that, with 2019
prices as base, annual growth in 1984 is overestimated by about 9% at the bottom of the income
distribution compared with 6% at the top.

Panel B of Figure 4 consider the biases for the levels of real consumption. The two panels
show that the nonhomotheticity correction in levels is very similar across all income percentiles,
with some noise inherent in survey data on expenditures. The effects in levels take into account
the combination of annual corrections and percentile-specific growth rates, as accumulated over
the full period.

Thus, the first key takeaway from our analysis is that the nonhomotheticity correction can be
sizable and, given the observed patterns of inflation inequality, it generally implies that welfare

37The biases are expressed as a share of measured growth, as given by λn
t defined in footnote (36) for each percentile

n in 2019.
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Figure 4: Nonhomotheticity Correction and Biases in Real Consumption by Income Percentiles

Panel A: Percentile-specific biases for annual growth in real consumption
(i) In 2019 with 1984 prices as base (ii) In 1984 with 2019 prices as base
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Panel B: Percentile-specific biases for the level of real consumption
(i) In 2019 with 1984 prices as base (ii) In 1984 with 2019 prices as base
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Note: This figure reports the biases in measures of real consumption due to the nonhomotheticity correction. The results for the annual growth
in real consumption are depicted using 1984 prices as base in panel A(i) and 2019 prices as base in panel A(ii). Panel B reports the result for the
bias in the level of real consumption. All panels use geometric price index formulas.

over time is higher than commonly thought. The extent of the resulting bias in the level of real
consumption is similar across income percentiles. Online Appendix Figure D.2 confirms this
finding by reporting the chained index formula, Πtπ

n
t , compared with the corrected nonhomo-

thetic deflator, yn
t /c n

t : the correction is similar in magnitude for all pre-tax income percentiles.
To assess the quantitative relevance of the nonhomotheticity correction, it is instructive to com-
pare its size to other sources of bias. In Online Appendix Figure D.3, we find that the size of
the nonhomotheticity correction is of the same order of magnitude as the divergence between
percentile-specific homothetic indices and the average homothetic index, which highlights the
quantitative relevance of the nonhomotheticity correction.
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Analysis from 1955 to 2019 Next, we extend the analysis back to 1955, reporting the results
in Figure 5.38 Panel (a) reports the bias in levels; the patterns are identical to Figure 3 after 1984.
With 1984 prices as base, we find that the level of real consumption is underestimated by about
2% in both 1955 and 2019 due to the nonhomotheticity correction. As a result, the conventional
measure of cumulative real consumption growth between 1955 and 2019 is not meaningfully
affected by the nonhomotheticity correction, simply because the two biases in levels in 2019 and
1955 turn out to be of the same magnitude.39

With 2019 prices as base, the nonhomotheticity correction becomes particularly large as we
go back in time, because inflation inequality exists throughout the entire period and the nonho-
motheticity correction accumulates over time. In 1955, average real consumption (per household)
is underestimated by about 11.4% by the uncorrected measure. This finding shows that the non-
homotheticity correction can become large over long time horizons, depending on the choice of
base prices.

Furthermore, Panel (b) of Figure 5 documents the bias in annual growth due to the nonho-
motheticity correction. With 1984 prices as base, the bias before and after 1984 changes sign.
Specifically, it ranges from a positive bias of 5% in 1955 to a negative bias of -7% in 2019. In
contrast, with 2019 prices as base the bias in annual consumption growth is always positive and
becomes large as we go back in time, approaching 15% in 1955.

To better appreciate the magnitude of the nonhomotheticity correction, panel (c) of Figure 5
reports cumulative consumption growth per household between 1955 and 2019; panel (d) reports
the same patterns by annualizing consumption growth. The standard, uncorrected measure of
cumulative consumption growth is 270% over this period, or 2.07% growth annually. With 1984
prices as base, the nonhomotheticity correction leaves these patterns almost unchanged, implying
a cumulative consumption growth of 267%. However, with 2019 prices as base, the difference
becomes large: cumulative consumption growth falls to 232%, or an annualized growth rate of
1.89% per year. Intuitively, from today’s perspective, consumer welfare in the past was higher
than conventionally thought, because income was lower in the past and necessities were relatively
cheaper. Hence, real consumption growth was smaller than conventionally thought.

38As explained in Appendix C, due to data limitations (i) we assume the expenditure shares observed in 1960
remain constant for the period 1955-1960, (ii) we interpolate expenditure shares between years 1960 and 1972, and
between 1972 and 1984.

39More generally, the biases in uncorrected measures are likely to vanish for some base period between any given
intial and final periods in environments in which inflation always varies monotonically in income in the cross-section
and nominal expenditure growth and inflation rates are stable over time. In such case, just like the case in Figure
5(a), the nonhomotheticity correction changes sign before and after the base period (see Figure 5(b)), and thus cancel
out when the base period is somewhere in the middle of two periods under consideration. However, note that this
bias-free base period varies depending on the specific choices of these initial and final periods. In this example, while
there is little bias for comparing average real consumption between 1955 and 2019, the comparison between 1955
and 1984 leads to an overestimation of the growth in real consumption.
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Figure 5: Nonhomotheticity Correction and Bias in Average Real Consumption, 1984-2019

(a) Bias in levels (b) Bias for annual growth
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Note: This figure report the biases in the level of average real consumption per household (Panel (a)) and in annual growth in real consumption
per household (Panel (b)). The bias is computed by applying Algorithm 1 to obtain the nonhomotheticity correction at the level of pre-tax
income percentiles; we then average percentile-level results to obtain average real consumption per household. Panels (c) and (d) reports patterns
of cumulative real consumption growth depending on the price index. All panels use geometric price indices.

With 2019 prices as base, the nonhomotheticity correction reduces the annual growth rate by
18 basis points, which is larger in than the observed difference of 11 basis between Laspeyres and
Paasche indices over the same time horizon. Online Appendix Figure D.4 reports the patterns
for the Laspeyres and Paasche indices. Cumulative real consumption growth was 277% with
the Paasche index, compared with 254% with Laspeyres, or a gap of 23 percentage points. By
comparison, the nonhomotheticity correction induces a gap of 38 percentage points relative to
the standard measure. These results show that the magnitude of the nonhomotheticity correction
can be as large as the well-known “expenditure switching bias” (or “substitution bias”) affecting
the Laspeyres and Paasche indices, which demonstrates its quantitative relevance.

3.3 Sensitivity Analysis

We now conduct several tests to assess the robustness of our findings. We first examine the sen-
sitivity of our results to alternative price indices, the second-order algorithm, and the inclusion
of controls, using the same dataset as in our baseline specifications. We then build alternative
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datasets to assess the stability of the results depending on data construction choices and the level
of aggregation of expenditure data.40

Alternative indices, second-order algorithm, and controls We implement several sensitivity
tests using the same datasets as in our baseline specifications. First, we assess the stability of the
results when using a Fisher price index formula along with our first-order Algorithm 1, instead
of using the geometric index formula. We also examine whether the results change when we
use Algorithm A.1, which implements a second-order approximation. The results are shown in
Panels A(i) and A(ii) of Figure 6: the patterns remain unchanged with the Fisher index as well as
with the algorithm providing a second-order approximation.

Next, we assess whether the patterns remain similar when including controls. We implement
Algorithm 1 as in Section 3.2, but we now add controls in the estimation of the income elasticity
of inflation in constructing the nonhomotheticity correction. We first control for education, age,
and race, reporting the results in Panel B(i) of Figure 6. We then introduce additional controls for
region (midwest, northeast, west, south), rural vs. urban area, gender, and city population size,
reporting the patterns in Panel B(ii). The patterns remain similar to our baseline specification
without controls. Likewise, Online Appendix Figure D.5 shows that the annual bias in growth
measurement remains almost unchanged when controls are included.41

Sensitivity analysis with alternative datasets To assess the sensitivity of our findings to data
construction choices, we build and study four alternative datasets.42

To document whether our results are sensitive to aggregation choices, we build two alternative
datasets which closely follow our main dataset but use different levels of aggregation, grouping
UCCs into broader categories. First, we create a version of the dataset at the level of the 32
product categories from CE summary tables, which are available from 1984 to 2019. Online
Appendix Figure D.10 reports the results, applying Algorithm 1 to this dataset. The results are

40In additional robustness checks, we find that the results remain similar when using higher-order polynomials
to estimate the income elasticity of inflation, when keeping expenditure shares fixed at the 1984 or 2019 levels, and
with quarterly instead of annual data (not reported).

41The Online Appendix reports additional sensitivity analyses. First, we assessed the sensitivity of our results to
the choice of the degree of the polynomial, K , when implementing Algorithm 1. Because the empirical relationship
between the household-level inflation rate, πn

t , and log real consumption, log ĉ n
t , is approximately log-linear during

the period we study, we obtain very similar results for any K ≥ 1. Appendix Figure D.6 reports the results for
K = 1 and K = 3. Second, we analyzed the data using the alternative algorithms described in the appendix, based on
estimation of the real consumption function (Algorithms A.2 and A.3). The results are very similar, as reported in
Appendix Figure D.7. Third, we consider a specification controlling for state fixed effects and obtain similar results
(Appendix Figure D.8). Fourth, we apply the algorithm of Baqaee et al. (2022) to our data (Appendix Figure D.9): we
find that our baseline algorithm and their algorithm deliver very similar results, in line with our theoretical results
showing that the two algorithms are equivalent to the first order.

42Online Appendix C provides a complete description of the data construction steps.
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Figure 6: Sensitivity Analysis

Panel A: Alternative price indices and second-order algorithm
(i) with 1984 prices as base (ii) with 2019 prices as base
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Panel B: Robustness to controls
(i) Education, age, race (ii) Extended controls

-2
.5

-2
-1

.5
-1

-.5
0

Bi
as

 in
 A

ve
ra

ge
 R

ea
l C

on
su

m
pt

io
n

1984 1989 1994 1999 2004 2009 2014 2019
Year

1984 base prices  2019 base prices

-2
.5

-2
-1

.5
-1

-.5
0

Bi
as

 in
 A

gg
re

at
e 

R
ea

l C
on

su
m

pt
io

n

1984 1989 1994 1999 2004 2009 2014 2019
Year

1984 base prices  2019 base prices

Note: This figure report the biases in the level of average real consumption per household due to the nonhomotheticity correction under different
specifications. Panel A reports the results under alternative price indices, geometric or Fisher, with the first-order algorithm, as well as with the
second-order algorithm. Panel A(i) uses 1984 prices as base, while Panel A(ii) uses 2019 prices. Panel B reports the results with controls, using
the geometric index and the first order algorithm. Panel B(i) controls for education, age, and race in the estimation of the income elasticity of
inflation. Panel B(ii) controls for region (midwest, northeast, west, south), urban vs. rural area, gender, and city population size, in addition to
education, age, and race.

very similar to those obtained with our main dataset, with slightly smaller magnitudes due to the
higher level of aggregation.43

Second, we manually group the 598 UCCs into 114 mutually exclusive product categories
that are continuously available from 1984 to 2019. The results are reported in Online Appendix
Figure D.11, showing that at this level of aggregation the results are almost indistinguishable from
the results obtained with our main analysis dataset.

Moreover, to document the magnitude of the nonhomotheticity correction with highly dis-
aggregated data, we implement our algorithm for a subset of expenditures for which product-level
data is available, using Nielsen data covering consumer packaged goods, or about 15% of aggre-

43The fact that the results are slightly weakened with more aggregated data was expected since inflation inequality
is weaker when working with more aggregated product categories (Jaravel, 2019).
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gate expenditure. This robustness check is motivated by prior work showing that most of the
heterogeneity in inflation rates arises at the product level, within detailed product categories (Jar-
avel, 2019). We assess whether using product-level data meaningfully affects the size of the bias
we estimate, at the cost of restricting attention to a subset of total expenditure. To implement
this robustness check, we work with the Nielsen data from 2004 to 2014. Although the data
cover a shorter time horizon, the annual level of inflation inequality is larger and the impact of
the nonhomotheticity correction is stronger, as shown in Online Appendix Figure D.12 . The
magnitude of the annual bias in real consumption growth increases faster than in our alternative
datasets, reaching 3% of the uncorrected measure after only a decade.44

Finally, we implement a robustness test inspired by the distributional national accounts of
Piketty et al. (2018): we discipline our household-level data such that aggregate expenditure shares
match exactly the official CPI consumption weights used by the Bureau of Labor Statistics (BLS)
for eight product categories. Indeed, BLS makes available the aggregate consumption weights
used when calculating CPI, which may differ from the expenditure shares in the CEX micro-
data.45 These weights are available at the level of eight consistent product categories from 1955 to
2019. We discipline our household-level CEX micro-data by introducing scaling factors, which
are uniform across households but are allowed to vary across the eight categories, such that aggre-
gate expenditure shares from our micro-data match exactly the aggregate consumption weights
used by BLS for the eight product categories.46 This robustness check thus allows us to check
whether our results are sensitive to data construction choices about expenditure patterns. We
obtain very similar results to our baseline dataset, as shown in Online Appendix Figure D.15.

44To provide a precise comparison of the magnitude of the biases obtained with the Nielsen data, we repeat the
analysis with our main CEX-CPI dataset restricted to the product categories covered in the Nielsen data between 2004
and 2014. The restricted CPI-CEX sample covers 44 UCC items belonging to the following categories: alcoholic
beverage; food at home; personal care products; pets, toys, hobbies, and playground equipment; sewing machines,
fabric and supplies; tools, hardware, outdoor equipment and supplies. The results are reported in Appendix Figure
D.13: we find that the patterns remain qualitatively similar but are attenuated when we use the more aggregate
CEX-CPI data. Taking 2004 prices as base, the bias in the level of real consumption in 2014 is -0.056% with the
Nielsen data, and -0.016% with the CEX-CPI sample; the bias in annual real consumption growth in 2014 is -2.83%
with the Nielsen data, and -0.78% with the CEX-CPI sample. Thus, the biases are about 3.5 times larger with the
detailed Nielsen data.The divergence between estimates is similar when we take 2014 prices as base. Finally, we run
an additional specification accounting for the welfare effect of new products in the Nielsen data. We account for
the welfare effects of changes in product variety using a CES price index, which we compute for each of the 9131
Nielsen product categories using the methodology of Feenstra (1994), which was applied to scanner data in Broda
and Weinstein (2010) and Jaravel (2019). The biases become larger because new goods create larger benefits for higher-
income households lowering their price indices and making the income elasticity of inflation more negative. Taking
2004 prices as base, the bias in the level of real consumption in 2014 is -0.17% when accounting for change in product
variety; the bias in annual real consumption growth in 2014 is -7.99% (Appendix Figure D.14). Thus, compared with
our baseline Nielsen estimates, the biases are about three times larger when accounting for new goods.

45The official CPI consumption weights are available at https://www.bls.gov/cpi/tables/
relative-importance/home.htm.

46See Appendix C for a detailed description of this step.
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For example, using 2019 prices as base, the average level of real consumption per household is
underestimated by 11.7% in this robustness check, compared to 11.4% in the baseline specifica-
tion.

Overall, these robustness checks show that the findings obtained with our baseline dataset are
not sensitive to data construction choices. Moreover, the finding that the correction is stronger
with more disaggregated data highlights the importance of using micro-data to accurately measure
growth in consumer welfare with income-dependent preferences.

4 Measuring Welfare Changes with Observed Heterogeneity

In this section, we extend the results of Section 2.2 to a setting including additional sources of
observed consumer characteristics that change over time, beyond income. Examples of such
characteristics include the age and education of consumers, or the number of household mem-
bers. Focusing in particular on the case of age, we use our theory to quantify the correction to
aggregate real consumption implied by consumer aging in the United States.

4.1 Correction for Change in Consumer Characteristics

Assume that we observe a vector of consumer characteristics (covariates) xt ∈ RD
+ at time t .47

We assume that consumer preferences are characterized by a well-behaved utility function u =
U (q;x) that depends on the consumer characteristics. We let y = E (u;p,x) denote the cor-
responding expenditure function. As before, we assume a path of prices pt and let ωi ,t (y;x)
denote the expenditure share on good i for a consumer facing prices pt , with total expenditure
y and characteristics x. We first define our generalized concept of real consumption in this envi-
ronment.

Definition 3 (Generalized Real Consumption). For reference prices pb (with 0≤ b ≤ T ), define
real consumption under period-b constant prices for a consumer with utility u and characteristics
x as a monotonic transformation Mb (u,x) of utility given by

c b =Mb (u;x)≡ E (u;pb ;x) . (24)

Definition 3 generalizes Definition 1 to a setting in which preferences potentially depend
on consumer characteristics. We cannot compare welfare across consumers with different char-
acteristics since they have distinct preferences. However, we can still compare the expenditure

47The assumption that the elements of the vector are positive valued is without loss of generality, as we can always
transform the characteristic space in such a way that this condition holds.
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required by consumers with such distinct preferences for any level of welfare when they face iden-
tical prices. Therefore, we can state that the real consumption of a consumer with preferences
xt with utility ut is higher than that of a consumer with preferences xt0

and utility ut0
by the

amount c b
t − c b

t0
≡Mb (ut ;xt )−Mb

�

ut0
;xt0

�

, using reference prices pb .
Let us investigate the definitions above under two special cases. First, if consumer preferences

do not change, i.e., xt ≡ xt0
, then the definition above reduces to our Definition 1, given under

homogeneous preferences. Second, if prices do not change, i.e., pt ≡ pt0
, the growth in real

consumption simply accounts for the growth in nominal expenditure even if consumer charac-
teristics change, c b

t /c b
t0
≡ yt/yt0

.
In parallel to the definitions introduced in Section 2.1.1, we denote byχ b

t (c ;x)≡ E
�

M−1
b (c ;x) ;x

�

the mapping from real consumption to expenditure at time t for a consumer with characteristic
vector x. The following Proposition generalizes Proposition 1 to account for potential changes
in consumer characteristics.

Proposition 3. Consider a path of prices pt and preferences that lead to the generalized Divisia
index function Dt (y;x) ≡

∑

i ωi ,t (y;x) d log pi t
d t over the interval [0,T ]. The mapping from real

consumption to total expenditureχ b
t (·; ·) at time t is the solution to the following differential equation

with initial condition χ b
b (c ;x) = c for all x:

∂ logχ b
t (c ;x)
∂ t

= log Dt

�

χ b
t (c ;x) ;x

�

. (25)

In addition, for any path of total nominal expenditure yt and vector of characteristic xt over the
interval, the growth in real consumption, defined under period-b constant prices, at any point in
time satisfies

d log c b
t

d t
=

1
1+Λb

t (ct ;xt )

�

d log yt

d t
− log Dt (yt ;xt )−

∑

d

Γ b
d ,t (ct ;xt )

d log xd t

d t

�

, (26)

where the nonhomotheticity correction function Λt (c ;x) and the characteristic-d correction function
Γd t (c ;x) are given by

Λb
t (c ;x)≡

∂ logχ b
t (c ;x)

∂ log c
− 1, Γ b

d ,t (c ;x)≡
∂ logχ b

t (c ;x)
∂ log xd

. (27)

Proof. See Appendix A.5.

Proposition 3 extends the same insight behind Proposition 1 to the case with preferences
that depend on consumer characteristics. It shows that the knowledge of the Divisia function is
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sufficient to uncover the mapping between real consumption and total consumption expenditure.
The main difference is that we now need to know how the Divisia function depends both on total
consumer expenditure and on consumer characteristics.

Let us now define the true price indexP b
t0,t (c ;x) under characteristic-dependent preferences:

P b
t0,t (c ;x)≡

χ b
t (c ;x)
χ b

t0
(c ;x)

, (28)

which is a generalization of the definition in Equation (3). This index measures the growth from
period t0 to t in the cost-of-living corresponding to a constant level of real consumption c for a
consumer with a constant vector of characteristics x. As before, we can express the true price
index as logP b

t0,t (c ;x) =
∫ t

t0
log Dτ

�

χ b
τ (c ;x) ;x

�

dτ. By characterizing the mapping χ b
t (c ;x),

Proposition 3 also fully characterizes the true price index in terms of the generalized Divisia
function.

Proposition 3 further characterizes the instantaneous growth in real consumption. In addi-
tion to the nonhomotheticity correction, defined just like before, we also need the characteristic

correction function index Γ b
d ,t ≡

∂ logχ b
t

∂ log x ≡
∂ logP b

b ,t

∂ log x , which captures the elasticity of the true price
index with respect to consumer characteristics. This index allows us to account for the effect
of changing consumer preferences (through changes in observable characteristics) on real con-
sumption. Similar to the nonhomotheticity correction function, these characteristic correction
functions account for the cumulative cross-product covariance between price inflations and the
elasticities of demand with respect to each characteristic:

Γ b
d ,t (c ;x) =

∫ t

b

�

I
∑

i=1

ωi ,τ

�

χ b
τ (c) ;x

�

ζ b
i ,d ,τ (c ;x)

d log pi ,τ

dτ

�

dτ,

where ζi ,d ,t (c ;x) ≡ ∂ logωi ,τ(χ b
τ (c);x)

∂ log xd
accounts for the elasticity of the expenditure share of good-i

with respect to characteristic d .
To see the intuition behind these results, consider an aging consumer and assume that infla-

tion is on average higher for goods that are elastic with respect to age. In this case, over time there
is an increase in the level of expenditure required to maintain the same level of real consumption
for this consumer, due to the aging-induced reallocation of expenditure toward goods with prices
that are rising faster. Holding prices fixed as in the initial period, Equation (26) shows that we

need to deflate the growth in nominal expenditure by an additional term,
∂ logP b

b ,t (ct ;xt )

∂ a g et

da g et
d t , to

account for the effect of aging on real consumption growth. Thus, when reference prices are set
as the initial base period, conventional measures of real consumption growth are biased upward
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because they do not account for the fact that, as people age, the relative price of the products they
favor increase. As in the case of nonhomotheticity, the sign of the bias inherently depends on the
choice of the base period for prices. Holding prices fixed in the final period to express real con-
sumption, conventional measures of real consumption growth are now biased downward since,
going backward in time, consumers are getting younger and the relative prices of the products
the favor is falling.

4.2 Approximating the Characteristic Correction Function

We generalize Algorithm 1 to account for variations in observable consumer characteristics and
to approximate the characteristic correction function introduced in Section 4.1. Algorithms A.4
and A.5 in Appendix A.4 achieve these generalizations based on first-order and second-order price
index formulas, respectively.

The idea underlying our approach is similar to that of Algorithm 1: starting in the base period,
we nonparametrically estimate the relationship between the measured price index formulas across
consumers and their total expenditures and other characteristics. We then use the estimated rela-
tionship with total expenditure and with other characteristics to approximate the corresponding
correction functions.

4.3 Application to the Measurement of Real Consumption in the US with

Consumer Aging

In this section, we apply our approach to data from the US on aging and quantify the magnitude
of the bias in conventional measures of real consumption growth.

Data and summary statistics To study the impact of consumer aging on real consumption
growth, we build another version of our main analysis dataset where cells now correspond to
age and income deciles, rather than income percentiles. Specifically, using the CEX data, in each
year we define ten deciles of the (pre-tax) income distribution and, within each income decile, we
compute ten age deciles. We then compute average age within each of these cells.48

Using this dataset, we compute inflation rates across age groups and find higher inflation
rates for older households, as shown in Panel (i) of Figure 7. This panel reports the cumulative
inflation rate by age deciles, using the geometric index between 1955 and 2019. The age elasticity
of inflation is positive, especially for older ages. Between 1955 and 2019, cumulative inflation
rates diverge by about 200 percentage points between the first and tenth age deciles. Thus, the

48Like in our main dataset, we use years 1960 and 1972 to interpolate expenditure shares. Online Appendix C
provides a complete description of the data construction steps.
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Figure 7: Consumer Aging and Real Consumption

(a) Inflation by Age Decile, 1955-2019 (b) Bias in the Level of Real Cons.
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Note: Panel (a) of this figure reports the cumulative geometric laspeyres index, from 1955 to 2019, for each age decile.
Panel (b) reports the bias in the level of real consumption per household due to the aging correction, relative to the
non-homothetic specification without aging correction. Algorithm A.4 is applied to our dataset at the level of
“age decile by income decile” units, using geometric laspeyres price indices. We then average the results to obtain
average real consumption per household with the aging correction.

relative price of products purchased by younger households has been falling over time. To the
best of our knowledge, this paper is the first to provide evidence on inflation inequality across
age groups over a long time horizon. Online Appendix Figure D.16 reports additional patterns
on inflation across groups, showing that the age elasticity of inflation was higher at older ages in
all periods.

As reported in Online Appendix Figure D.17, average household age has been on the rise in
the U.S., especially from 1970 onward. Therefore, by the logic of Section 4.1, conventional mea-
sures of real consumption must be biased upward. We now proceed to quantify the magnitude
of this bias.

Aging correction for average real consumption We apply Algorithm A.4 to quantify the
adjustment to average real consumption implied by consumer aging. Panel (b) of Figure 7 report
the results. Specifically, we report the deviation in the level of average real consumption when
accounting for both aging and nonhomotheticities, relative to the benchmark measure with only
the nonhomotheticity correction.49

Using 2019 prices as base, we find a meaningful aging correction: in 1955, the benchmark
measure overestimates real consumption by about 1.2%. Intuitively, households in 1955 were on
average younger than in 2019, and the price of product categories purchased predominantly by
younger households was higher. Therefore, society as a whole had lower real consumption in

49In the dataset with age-by-income cells used for our analysis in this section, the effect of the nonhomotheticity
correction (relative to the standard homothetic real consumption measure) is close in magnitude to the bias shown
in Section 3 with our baseline dataset using income percentiles.
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1955 than commonly thought, i.e. the conventional measure that does not account for consumer
aging is biased upward.

Using 1984 as base, the correction becomes much smaller, although it has the same sign. The
benchmark measure overestimates real consumption by about 30 basis points in 2019. Intuitively,
households are on average older in 2019 than in 1984 and the relative price of goods purchased
by older households has increased over time, i.e. society is worse off in 2019 relative to standard
measures without the aging correction.50

In sum, these patterns illustrate that changes in consumer characteristics such as age can have
a meaningful effect on the measurement of average real consumption, depending on the choice of
base prices. In the case of aging, the adjustments are economically meaningful but much smaller
than the nonhomotheticity correction, which justifies our focus on the latter. While there is a
strong relationship between age and inflation, the correction to average real consumption implied
by aging is smaller than the nonhomotheticity correction primarily because the change in average
household age over time is relatively slow.

5 Conclusion

In this paper, we extended the results of the classical index number theory to settings in which
composition of demand depends on income (nonhomotheticity) and other consumer character-
istics. We developed a procedure for nonparametric measurement of consumer welfare based
on price index formulas, imposing minimal restrictions on the underlying preferences. This ap-
proach remains valid under any observable household heterogeneity in preferences, and requires
only data on spending patterns in a cross-section of households.

We showed the practical relevance of the correction for nonhomotheticities when computing
long-run growth in consumer welfare. With our correction taking 2019 prices as base, growth
in consumer welfare is significantly attenuated in the United States in the post-war era, due to
the combination of fast growth and lower inflation for income-elastic products. The correction
reduces the annual growth rate from 1955 to 2019 by 18 basis points, which is larger than the “ex-
penditure switching bias” affecting Laspeyres and Paasche indices over the same time horizon.
Extending this analysis to other countries and time periods, as well as to the measurement of pur-
chasing power parity (PPP) indices across countries with preference heterogeneity, is a promising
direction for future research.

Our results may have important implications for the way in which national statistical agen-

50To understand the difference in the magnitude of the aging correction depending on the choice of base years,
note that the speed of consumer aging is slower before the 1980s, and that the covariance between inflation and
household age is also weaker before the 1980s, as showin in Online Appendix Figures D.16 and D.17.
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cies around the world construct measures of real economic value. There are at least three reasons
for why our approach has the potential to be widely adopted. First, our approach has a light
data requirement. It combines standard price data with information from surveys of consumer
expenditures, which are typically available to statistical agencies as these surveys are already used
in the construction of homothetic price indices. In Section 3, we have offered a blueprint for
how the Bureau of Labor Statistics (BLS) can use data that is already available to construct im-
proved measures of real consumption growth and inequality in the US. Second, our approach
has a light computational burden. In its first-order renditions, our algorithms simply require one
cross-sectional regression per period to construct the required corrections, irrespective of the
number of products considered. Our second-order algorithms also converge in a few steps per
period when applied to U.S. data. Third, our approach closely follows the standard practice for
constructing real economic values by deflating year-on-year growth in nominal values by price
index formulas. Our algorithms construct first- and second-order corrections to these standard
formulas to account for the role of income-dependence in preferences. Our approach thus allows
statistical agencies to transparently examine the contribution of the nonhomotheticity adjust-
ments to their measures. The tight connection between the nonhomotheticity corrections and
observed inflation inequality in the cross-section of households further strengthens the trans-
parency of our procedure.

Due to its light computational and data requirements, our approach can readily be used by
statistical agencies to generate distinct series of real consumption (or panels across different in-
come quantiles) for all base years for which cross-sectional data is available. Depending on their
goals, different data users may opt to rely on data expressed in terms of a different base periods.
For instance, if a government program has determined in a certain year that households should
be eligible to some benefits if they are below a given consumption threshold (e.g., the poverty
line), then this year constitutes the suitable base year for tracking household consumption and
potential changes in this threshold in all future years. In contrast, if the goal is to evaluate con-
sumption growth over long time horizons in a way that could be best understood by households
today, using today’s prices offers a suitable base to express measures of real consumption, insofar
as households are likely to better understand money metrics based on the prices they currently
face. We believe these and other applications of our framework are fruitful directions for statis-
tical agencies going forward.

References

Antonelli, Giovanni B, “Sulla teoria matematica della economia politica (Pisa, Folchetto; repub-
lished with an introduction by G. Demaria and Comments by G. Ricci, Milan: Falfari, 1952),”

42



1886. A1

Argente, David and Munseob Lee, “Cost of Living Inequality during the Great Recession,”
Journal of the European Economic Association, 2021, 19 (2), 913–952. 2, 7, 26

Atkin, David, Benjamin Faber, Thibault Fally, and Marco Gonzalez-Navarro, “Measuring
Welfare and Inequality with Incomplete Price Information,” 2020. 6, 7, 13

Baqaee, David and Ariel Burstein, “Welfare and Output with Income Effects and Demand
Instability,” 2021. 2, 6, 13

Baqaee, David R, Ariel T Burstein, and Yasutaka Koike-Mori, “Measuring Welfare with In-
come Effects using Cross-Sectional Data,” 2022. 7, 15, 20, 33, A0, A8, A37, A38, A39, A41,
A42, A53

Battistin, Erich, Richard Blundell, and Arthur Lewbel, “Why Is Consumption More Log
Normal than Income? Gibrat’s Law Revisited,” Journal of Political Economy, 2009, 117 (6),
1140–1154. 23

Blackorby, Charles and David Donaldson, “Money metric utility: A harmless normaliza-
tion?,” Journal of Economic Theory, 1988, 46 (1), 120–129. 5

Blundell, Richard W, Martin Browning, and Ian A Crawford, “Nonparametric Engel curves
and revealed preference,” Econometrica, 2003, 71 (1), 205–240. 6

Bosmans, Kristof, Koen Decancq, and Erwin Ooghe, “Who’s afraid of aggregating money
metrics?,” Theoretical Economics, 2018, 13 (2), 467–484. 5

Broda, Christian and David E Weinstein, “Product Creation and Destruction: Evidence and
Price Implications,” American Economic Review, 2010, 100 (3), 691–723. 35, A55

Comin, Diego, Danial Lashkari, and Marti Mestieri, “Structural change with long-run income
and price effects,” Econometrica, 2021, 89 (1), 311–374. 4, 23, A37

Deaton, Angus and John Muellbauer, “An almost ideal demand system,” American Economic
Review, 1980, 70 (3), 312–326. 7

Diewert, W Erwin, “Exact and superlative index numbers,” Journal of Econometrics, 1976, 4 (2),
115–145. 6, 16, 22

, “Superlative Index Numbers and Consistency in Aggregation,” Econometrica, 1978, 46 (4),
883–900. 22

43



Diewert, Walter E, “The economic theory of index numbers: a survey,” in Walter E Diewert
and Alice O Nakamura, eds., Essays in Index Number Theory, Emerald Group Publishing Ltd,
1993, chapter 7, pp. 163–208. 2, 6, 10, 22

Engel, Ernst, “Die Produktions- und Consumtionsverhältnisse des Königreichs Sachsen,”
Zeitschrift des Statistischen Büreaus des Königlich Sächischen Ministeriums des Innern, 1857, 8-
9, 1–54. 2

Fajgelbaum, Pablo D and Amit K Khandelwal, “Measuring the Unequal Gains from Trade,”
Quarterly Journal of Economics, 2016, 131 (3), 1113–1180. 6, 7, 13

Feenstra, Robert C, “New Product Varieties and the Measurement of International Prices,”
American Economic Review, 1994, 84 (1), 157–77. 35, A55

, Hong Ma, and DS Prasada Rao, “Consistent comparisons of real incomes across time and
space,” Macroeconomic Dynamics, 2009, 13 (S2), 169–193. 7

Hobijn, Bart and David Lagakos, “Inflation inequality in the United States,” Review of Income
and Wealth, 2005, 51 (4), 581–606. 7

Hulten, Charles R, “Divisia Index Numbers,” Econometria, 1973, 41 (6), 1017–1025. 12

Jaravel, Xavier, “The unequal gains from product innovations: evidence from the US retail sec-
tor,” Quarterly Journal of Economics, 2019, 134 (2), 715–783. 2, 7, 26, 27, 34, 35, A47, A55

, “Inflation Inequality: Measurement, Causes, and Policy Implications,” Annual Review of
Economics, 2021, 13, 599–629. 2

Kaplan, Greg and Sam Schulhofer-Wohl, “Inflation at the household level,” Journal of Monetary
Economics, 2017, 91, 19–38. 2, 7, 26

Klick, Josh and Anya Stockburger, “Experimental CPI for lower and higher income house-
holds,” 2021. 2

McGranahan, Leslie and Anna Paulson, “Federal Reserve Bank of Chicago Demographic
Group : 1983-2005 Inflation Experiences by Demographic Group : 1983-2005 Federal Reserve
Bank of Chicago,” 2006. 7

Newey, Whitney K., “Convergence rates and asymptotic normality for series estimators,” Jour-
nal of Econometrics, 1997, 79 (1), 147–168. 18, A6, A23, A24, A30, A31

Oberfield, Ezra, “Inequality and Measured Growth,” 2022. 4, 15

44



Oulton, Nicholas, “Chain indices of the cost-of-living and the path-dependence problem: An
empirical solution,” Journal of Econometrics, 2008, 144 (1), 306–324. 7

Piketty, Thomas, Emmanuel Saez, and Gabriel Zucman, “Distributional national accounts:
methods and estimates for the United States,” Quarterly Journal of Economics, 2018, 133 (2),
553–609. 2, 26, 35, A46

Pollak, Robert A, “The theory of the cost-of-living index,” in W Erwin Diewert, ed., Price Level
Measurement, Elsevier North Holland Inc., 1990, pp. 5–77. 6

Redding, Stephen J. and David E. Weinstein, “Measuring Aggregate Price Indices with Taste
Shocks: Theory and Evidence for CES Preferences,” Quarterly Journal of Economics, 2020, 135
(1), 503–560. 7

Samuelson, Paul A, “The problem of integrability in utility theory,” Economica, 1950, 17 (68),
355–385. A1

and S Swamy, “Invariant Economic Index Numbers and Canonical Duality: Survey and
Synthesis,” American Economic Review, 1974, 64 (4), 566–593. 2, 6, 10, 22

Slesnick, Daniel T, “Aggregate deadweight loss and money metric social welfare,” International
Economic Review, 1991, pp. 123–146. 5

45



Appendix to “Measuring Growth in Consumer Welfare with
Income-Dependent Preferences”

Xavier Jaravel, London School of Economics
Danial Lashkari, Boston College

March 2023

Contents

A Theory Appendix A1
A.1 Proposition 1 and the Integrability Problem . . . . . . . . . . . . . . . . . . . . . . . . A1
A.2 Characterization of the Real Consumption Function . . . . . . . . . . . . . . . . . . A2
A.3 Alternative Algorithms and Results on Approximation Errors . . . . . . . . . . . . A3

A.3.1 Second-Order Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A3
A.3.2 Algorithms Based on the Real Consumption Function . . . . . . . . . . . . A5
A.3.3 Comparison with Baqaee et al. (2022) . . . . . . . . . . . . . . . . . . . . . . . A8

A.4 Approximating Welfare Changes with Observed Heterogeneity . . . . . . . . . . . A14
A.5 Proofs and Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A16

A.5.1 Proofs of the Main Lemmas and Propositions . . . . . . . . . . . . . . . . . . A16
A.5.2 Additional Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A26

B Additional Simulation Results A31
B.1 The Evolution of the Mapping between Real Consumption and Expenditure . . . A31
B.2 Comparison of the Performance of Alternative Algorithms . . . . . . . . . . . . . . A37

C Data Appendix A42
C.1 Dataset for the Main Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A42
C.2 Datasets for Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A47

D Additional Figures A48



A Theory Appendix

A.1 Proposition 1 and the Integrability Problem

Proposition 1 has a tight link to the classical integrability problem, which has long been studied
in economics (e.g., Antonelli, 1886; Samuelson, 1950). Consider a demand system ω (y;p) that
gives the vector of expenditure shares of the household as a function of total expenditure and the
vector of prices, satisfying

∑

i ωi (y;p) = 1 and ω (α y;αp) = ω (y;p) for all y, p, and α > 0.
The integrability problem asks whether we can uncover the corresponding expenditure function
E (u;p) from the knowledge of such a demand system. The answer is that the demand system is
integrable if and only if the corresponding Slutsky matrix is negative semidefinite and symmetric.
Under this assumption, the expenditure function is given as the solution to the following system
of differential equations

∂ log E (u;p)
∂ log pi

=ωi (E (u;p) ;p) , for all i , (A.1)

with the initial condition E (u;p0) = y0 for a fixed vector of prices p0 and different choices of y0.
We can think of Proposition 1 as an application of the above result along a specific path of

prices. In particular, we can write

∂ logχt (c)
∂ t

=
∂ log E

�

M−1
b (c) ;pt

�

∂ t
=
∑

i

∂ log E
�

M−1
b (c) ;pt

�

∂ log pi t

d log pi t

d t
,

=
∑

i

ωi ,t (χt (c))
d log pi t

d t
,

= log Dt (χt (c)) ,

where in the second equality we have substituted from Equation (A.1), using ωi ,t (χt (c)) ≡
ωi (χt (c) ;pt ). Thus, since we assume that the conditions for integrability hold, the differential
equation in Proposition 1 uniquely characterizes the path of the mapping from real consumption
to expenditure.

The key distinction between the classical integrability problem and our results are as follows.
First, the classical problem aims to to recover the full structure of preferences (in terms of an
expenditure function or an indirect utility function), given the knowledge of the full demand
function. In contrast, we only aim to recover the value of the indirect utility (in money metric
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terms) for specific combinations of expenditures and prices observed in the data. Second, the
classical problem aims to characterize the set of demand functions that may correspond to a valid
expenditure (or indirect utility) function. In constrast, we already begin with the assumption
that the observed data corresponds to demand that is rationalizable by a utility function that
corresponds to a smooth expenditure function. Finally, our goal is to find the expenditure func-
tion expressed in terms of the particular cardinalization given by the money metric utility. In
sum, our paper does not provide new results about the rationalizability of observed demand. In-
stead, it studies how to uncover money metric utility values corresponding to any combination
of prices and expenditures observed in the data, assuming that they are rationalized by a smooth
expenditure function.

A.2 Characterization of the Real Consumption Function

We can characterize the real consumption function eχ b
t (y), the inverse mapping from expenditure

to real consumption in terms of prices in the base period b . This mapping is the indirect utility
function, in money metric terms corresponding to the base period b , and is defined such that

eχ b
t

�

χ b
t (c)

�

≡ c , ∀t , c . (A.2)

Since this equation holds for any c , we can substitute for c from Equation (A.2) in Equation (11)
to find

logχ b
t

�

eχ b
t (y)

�

= log eχ b
t (y)+

∫ t

b
log Dτ

�

χ b
τ

�

eχ b
t (y)

��

dτ,

which leads to Equation (14).
For completeness, we state a corollary (and dual) of Proposition 1 to directly characterize the

mapping eχ b
t (·) as a differential equation in terms of the Divisia index function log Dt (·).

Corollary 1. The mapping eχ b
t (·) from expenditure to real consumption (under prices in base period

b ) satisfies the following partial differential equation

∂ log eχ b
t (y)

∂ t
+
∂ log eχ b

t (y)
∂ log y

· log Dt (y) = 0, for all t 6= b , (A.3)

with the boundary condition eχ b
b (y) = y. In addition, for any path of total nominal expenditure

yt over the interval, the growth in real consumption, defined under period-b constant prices, at any
point in time satisfies

d log c b
t

d t
=
∂ log eχ b

t (yt )
∂ log yt

×
�

d log yt

d t
− log Dt (yt )

�

. (A.4)
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Proof. Taking the full time derivative of log eχ b
t

�

χ b
t (c)

�

≡ log c we find

0=
∂ log eχ b

t (y)
∂ t

�

�

�

�

�

y=χt (c)

+
∂ log eχ b

t (y)
∂ log y

�

�

�

�

�

y=χt (c)

·
∂ logχ b

t (c)
∂ log t

,

=
∂ log eχ b

t (y)
∂ t

�

�

�

�

�

y=χt (c)

+
∂ log eχ b

t (y)
∂ log y

�

�

�

�

�

y=χt (c)

· log Dt

�

χ b
t (c)

�

,

where in the second equality, we have used Equation (9) to substitute for ∂ logχ b
t (c)

∂ log t . Substituting
for y = χ b

t (c) leads to Equation (A.3). Taking the derivative of χ b
t

�

eχ b
t (y)

�

≡ y with respect to

y, we find that ∂ log eχ b
t (y)

∂ log yt
=
�

∂ logχ b
t (c)

∂ log c b
t

�−1
for y = χ b

t (c), which, when combined with Equation

(10), leads to Equation (A.4).

In this paper, we rely on Equation (9), which simplifies the first-order hyperbolic partial differ-
ential equation (A.3) into an ordinary differential equation. The differential equation (9) achieves
this simplification by constructing the characteristic curves of the function eχ b

t (y), that is, the
curves along which the value of the mapping remains constant c = eχ b

t (y).
More generally, we may combine numerical solutions of the partial differential equation (A.3)

with approximations of the Divisa index function to find tighter error bounds for the approxi-
mation errors. Thus, there are many alternative approaches to approximately solve the partial
differential equation (A.3) based on cross-sectional data. We examine a number of these alterna-
tives in Section A.3 below.

A.3 Alternative Algorithms and Results on Approximation Errors

A.3.1 Second-Order Algorithm

In this Section, we provide an extension of our baseline algorithm that allow us to approximate
changes in real consumption growth to the second order of approximation.

Algorithm A.1 (Baseline Second-Order Algorithm). Let bc n
b ≡ yn

b , and consider the sequence of
power functions { fk(z) ≡ zk}KN

k=0 where KN grows with N, the number of consumers in the cross-
section. For each t ≥ b , apply the following steps:

1. Initialize the values of the real consumption in period t + 1 using the first-order algorithm:

Evaluate bc n,(0)
t+1 using Algorithm 1.

2. Iteratively find the real consumption in period t + 1:

A3



Iterate over the following steps over τ ∈ {0,1, · · · } until convergence for some tolerance
ε� 1.

(a) Nonparametrically fit a first-order term needed for finding the true price index between
periods t and t + 1:

Solve for the coefficients
�

bα†
k ,t

�K

k=0
in the following problem:

min
(α†

k ,t)
K

k=0

N
∑

n=1

�

πn
t −

K
∑

k=0

α†
k ,t fk

�

logbc n,(τ)
t+1

�

�2

, (A.5)

where πn
t ≡ logPG

�

pt+1,s
n
t+1;pt ,s

n
t

�

..

(b) Nonparametrically fit the true price index between periods t and t + 1:

Solve for the coefficients
�

bβk ,t

�K

k=0
in the following problem:

min
(bαk ,t)

K

k=0

N
∑

n=1

�

π∗,nt +ρ
n,(τ)
t −

K
∑

k=0

bβk ,t fk (logbc n
t )
�2

, (A.6)

with ρn,(τ)
t is defined as:

ρn,(τ)
t ≡ 1

4

K
∑

k=0

bα†
k ,t

�

f ′k (logbc n
t )+ f ′k

�

logbc n,(τ)
t+1

��

log

 

bc n,(τ)
t+1

bc n
t

!

. (A.7)

and where π∗,nt is the value of a second-order price index for consumer n, that is,
π∗,nt ≡ logPT

�

pt ,s
n
t ;pt+1,s

n
t+1

�

.

(c) Estimate the values of real consumption for consumers in period t + 1:

Update the real consumption in the next period for each consumer

logbc n,(τ+1)
t+1 = logbc n,(τ)

t +
1

1+ 1
2

�

bΛt (bc n
t )+ bΛt+1

�

bc n,(τ)
t+1

��

�

log
�

yn
t+1

yn
t

�

−π∗,nt

�

, (A.8)

where we have defined the approximate nonhomothetic correction function as:

bΛb ,t+1 (c)≡
K
∑

k=0

�

t+1
∑

τ=b+1

bβk ,τ

�

f ′k (log c) . (A.9)

(d) Stopping criterion: if maxn

�

�

�
bc n,(τ+1)

t+1 − bc n,(τ)
t+1

�

�

�< ε and set bc n
t+1 ≡ bc

n,(τ+1)
t+1 .
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Function cPb ,t+1 (c)≡
∑K

k=0

�

∑t+1
τ=b+1

bβk ,τ

�

f k (log c) provides a second-order approximation for
the true price index function P b

b ,t+1 (c) defined in Equation (12). Equation (A.8) then updates

our current guess bc n,(τ)
t+1 about the next-period real consumption.

A.3.2 Algorithms Based on the Real Consumption Function

Our baseline first-order and second-order Algorithms 1 and A.1 approximate the nonhomothetic-
ity correction as the inverse of the elasticity of the mapping from expenditure to real consumption
χ b

t (c). In this section, we provide parallels to these algorithm that rely on the elasticity of the
inverse of that mapping, which is the real consumption function eχ b

t (y). Unlike our baseline
algorithms, however, this approach does not allow us to draw an intuitive and transparent con-
nection between the nonhomotheticity correction and the observed variations in inflation across
households. However, this alternative approach may lead to better analytical properties. This
is because in this approach we approximate the derivative of the estimated function with respect
to total expenditures, which are directly observed in the data and do not contain approximation
errors. For this reason, below we present results that characterize bounds on the approximation
errors for the first-order Algorithm A.2 and the second-order Algorithm A.3 based on the real
consumption function.

Algorithm A.2 (First-Order Algorithm based on the Real Consumption Function (RCF) ). Con-
sider a sequence of power functions { fk(z)≡ zk}KN

k=0 for some KN , where N is the number of consumers
in the cross-section. Let bc n

b ≡ yn
b and and for each t ≥ b , successively apply the following two steps.

1. Nonparametrically fit the real consumption function eχt (·) at time t :

Estimate the coefficients
�

bαk ,t

�KN

k=0
solving the following problem:

min
(αk ,t)

K

k=0

N
∑

n=1

�

logbc n
t −

KN
∑

k=0

αk ,t fk (log yn
t )
�2

, (A.10)

where {bc n
t }n are the current period’s household-specific values of real consumption.

2. Estimate the nonhomotheticity correction and the values of real consumption for consumers in
period t + 1:

Use Equation (19), where the estimate of the nonhomotheticity correction for household n at
time t is given by

bΛn
t+1 ≡

� KN
∑

k=0

bαk ,t f ′k (log yn
t )
�−1

− 1, (A.11)
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and use the following rule to compue the values of each household’s real consumption according
to:

logbc n
t+1 = logbc n

t +
1

1+ bΛn
t+1

�

log
�

yt+1

yt

�

−πt

�

, (A.12)

where {πn
t }n are household-specific price index formulas at time t defined by Equation (18).

Algorithm A.3 (Second-Order Algorithm based on the Real Consumption Function (RCF)).
Consider a sequence of power functions { fk(z) ≡ zk}KN

k=0 for some KN , where N is the number of
consumers in the cross-section.A1 Let bc n

b ≡ yn
b , eχ b

b (y)≡ y, and and for each t ≥ b , successively apply
the following two steps.

1. Initialize the values of the real consumption in period t + 1 using the first-order algorithm:

Evaluate bc n,(0)
t+1 using Algorithm A.2.

2. Iteratively find the real consumption in period t + 1:

Iterate over the following steps over τ ∈ {0,1, · · · } until convergence for some tolerance ε� 1.

(a) Nonparametrically fit a first-order approximation of the real consumption function at
time t + 1:

Estimate the coefficients
�

bα(τ)k ,t

�KN

k=0
solving the following problem:

min
�

α(τ)
k ,t+1

�K

k=0

N
∑

n=1

�

logbc n,(τ)
t+1 −

KN
∑

k=0

α(τ)k ,t+1 fk (log yn
t )
�2

, (A.13)

where
¦

bc n,(τ)
t+1

©

n
are the next period’s household-specific values of real consumption in iter-

ation τ. Let eχ b ,(τ)
t+1 (y)≡

∑

k α
(τ)
k ,t+1 fk (log y) .

(b) Estimate the nonhomotheticity correction and the values of real consumption for consumers
in period t + 1:

Update the real consumption in the next period for each consumer

logbc n,(τ+1)
t+1 = logbc n

t +
1

1+ 1
2

�

bΛn
t + bΛ

n+1,(τ)
t+1

�

�

log
�

yn
t+1

yn
t

�

−πn
T ,t

�

, (A.14)

A1One can apply alternative series-function approximations, using alternative basis functions such as Fourier,
Spline, or Wavelets. The results here generalize to such alternative nonparametric methods subject to modified regu-
larity assumptions on the expenditure function and the distribution of real consumption across consumers (Newey,
1997).
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where we use the Torqvist index formula πn
T ,t ≡ logPT

�

pt ,s
n
t ;pt+1,s

n
t+1

�

, and where
the estimates of the nonhomotheticity correction for household n at times t and t + 1 are
given by

bΛn
t ≡

� KN
∑

k=0

bαk ,t f ′k (log yn
t )
�−1

− 1, (A.15)

bΛn,(τ)
t+1 ≡

� KN
∑

k=0

bα(τ)k ,t+1 f ′k
�

log yn
t+1

�

�−1

− 1. (A.16)

(c) Stopping criterion: if maxn

�

�

�
bc n,(τ+1)

t+1 − bc n,(τ)
t+1

�

�

� < ε, set bc n
t+1 ≡ bc n,(τ+1)

t+1 and eχ b
t+1 (y) ≡

eχ b ,(τ)
t+1 (y).

Results on the Approximation Errors The following proposition establishes error bounds for
the approximation error of the sequence of values of real consumption growth constructed by
Algorithm A.2 in the main text for all t ≥ b , as T , KN , and N go to infinity, under the specified
regularity assumptions.

Proposition A.1. Assume that the underlying distribution of total expenditure across consumers has
a probability distribution function that is bounded away from zero over some interval

�

y
t
, y t

�

for

all t ≥ 0. If the assumptions laid out in Section 2.3.1 hold with ∆ ≡ max
¦

∆p ,∆y

©

, and if the
expenditure function E (·; ·) is continuously differentiable of order m ≥ 5, then the sequences of real
consumptions constructed by Algorithm 1 satisfy:

log
�

c n
t+1

c n
t

�

= log
�

bc n
t+1

bc n
t

�

+Op

�

∆2� , (A.17)

if K7
N∆

2/N and K−(m−4)
N ∆−1 remain bounded as N and KN grow toward infinity and∆ goes to zero.

Proof. See Appendix A.5.

The proof of Proposition A.1 shows three sources of approximation error in the results pro-
duced by Algorithm A.2: 1) the index formula approximation error implied by Lemma 2, which
is second-order in ∆; 2) the error due to the approximation of the true price index function
Pb ,t (c) based on the cross-section of consumers, which falls as we observe more consumers N
and if we choose KN such that K7

N/N → 0 (ensuring the boundedness of K7
N∆

2/N ); and 3) the
error due to the functional approximation using a finite set of basis functions, which falls as we
choose a more flexible set of basis functions by increasing KN and thus reduce the term K4−m

N

(ensuring the boundedness of K−(m−4)
N ∆−1).
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The following proposition establishes that Algorithm A.3 yields a second-order approxima-
tion to the true price index between any periods t and t + 1.

Proposition A.2. Assume that the underlying distribution of total expenditure across consumers has
a probability distribution function that is bounded away from zero over some interval

�

y
t
, y t

�

for
all t ≥ 0. If Assumptions laid out in Section 2.3.1 hold with ∆ ≡ max{∆p ,∆y}, and if E (·; ·) is
continuously differentiable of order m ≥ 5, then the sequences of real consumptions bc n

t constructed by
Algorithm A.1 satisfy:

log
�

c n
t+1

c n
t

�

= log
�

bc n
t+1

bc n
t

�

+Op

�

∆3� , (A.18)

if K7
N∆

2/N and K−(m−4)
N ∆−2 remain bounded as N and KN grow toward infinity and∆ goes to zero,

and if we choose the tolerance of the loop in the algorithm to be ε=O
�

∆3
�

.

Proof. See Appendix A.5.

A.3.3 Comparison with Baqaee et al. (2022)

In this section of the appendix, we offer a step-by-step comparison of the approach that Baqaee
et al. (2022) (henceforth, BBK) have subsequently proposed as an alternative to our algorithm.
There are close similarities between the approaches. Their approach relies on the core insight
of our paper, that the cross-sectional data on household consumption expenditures is sufficient
to recover theory-consistent money metric utility over time. Their approach, just like our first-
order algorithm, also provides a first-order approximation to the solution of differential equation
(9), and is thus guaranteed to yield similar approximations to ours. We demonstrate this point
empirically using a simulation (Appendix B.2) and in real U.S. data (Appendix Figure D.9).

Despite these tight connections, our approach has several advantages over the alternative BBK
algorithm, which can be summarized as follows:

1. We provide a second-order algorithm that achieves lower approximation errors, and we also
formally derive approximation error bounds for our algorithms. In our simulations, the
approximation error for our second-order algorithms is two to three orders of magnitude
smaller than for the BBK algorithm.

2. Our approach explicitly characterizes the corrections needed to account for nonhomoth-
eticity in the standard measures of real consumption, used commonly by statistical agen-
cies, and builds an intuitive connection between such corrections and the patterns of infla-
tion inequality in the data.
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3. The computational burden of our approach does not scale with the number of products I ,
while it grows proporationally to this number for the BBK algorithm.

4. Our approach allows us to uncover approximate estimates of real consumption for all
households observed at any point in time, whereas the BBK algorithm limits this range
to households whose levels of real consumption overlap with the range of values observed
in the cross-section in all years between the base year and the current year. We show in sim-
ulations that our algorithms achieve low approximation errors even outside of the range
studied by BBK.

In addition to these theoretical and practical advantages, as we discuss in Section 4, our approach
can be generalized to account for other non-income observables that affect the composition of
demand.

In addition to our comparisons, in this appendix we also provide several extensions and mod-
ifications to the BBK’s suggested method that removes the limitations cited above. In particular,
we suggest 1) a second-order version of BBK, 2) a version of BBK with a computation burden that
does not scale with the number of products, and 3) a version of BBK that can uncover estimates
of real consumption values outside the range observed in the initial period. These results again
point to the tight similarity between the two approaches.

Overview of BBK’s Algorithms BBK provide two alternative algorithms to approximately
solve for Equation (14) and characterize the real consumption function, always taking the first
period as the base b = 0. As a result, to simplify the exposition in this section, we drop the
superscript b = 0. The BBK algorithm relies on estimating I expenditure share functions Òωi ,t (y)
in terms of total expenditure y, based on observed total expenditure yn

t and expenditure shares
s n
i t across households at each time t . They find each function Òωi ,t (·) by estimating coefficients
bβk ,i ,t such that

Òωi ,t (y) =
∑

k

bβk ,i ,t fk (y)

fits the observed collections of expenditure shares s n
i t and expenditures yn

t across households n.A2

They use the estimated I functions to construct an approximation for the integral in Equation
(14) between periods t and t + 1:

log cP †
t ,t+1 (y)≡

∑

i

Òωi ,t (y) log
�

pi t+1

pi t

�

, (A.19)

A2In practice, BBK implement their algorithm by fitting a second-order polynomial.
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which approximates cP †
t ,t+1 (y)≈Pt ,t+1 ( eχt (y)), wherePt ,t+1 (·) is defined as in Equation (3).

1. “Fixed-Point” BBK Algorithm. Start with eχ0 (y) = y. A first-order approximation of Equa-
tion (14) is given by

log eχt+1 (y)≈ log y −
t
∑

τ=0

log cP †
τ,τ+1

�

χτ
�

eχt+1 (y)
��

. (A.20)

Notice that we need to know χτ (·) for τ ≤ t , which we can find by inverting eχτ (y) at
each period. Thus, we can solve the fixed-point problem in Equation (A.20) for each y to
recover eχt+1 (y).

2. “Iterative” BBK Algorithm. Start with eχ0 (y) = y. Approximate Equation (A.20) by letting

log eχt+1 (y)≈ log y −
t
∑

τ=0

log cP †
τ,τ+1 (χτ ( eχt (y))) . (A.21)

In this case, since eχt (y) known at each period t , there is no need to solve a fixed-point
problem.

Formal Connection between our Baseline First-Order Algorithm 1 and BBK Algorithms
Since both our algorithm and the BBK algorithms offer approximate solutions to the same partial
differential equation, it should not come as a surprise that they lead to similar solutions. Below,
we show how one can map each step of the BBK algorithm to our algorithm, and we formally
show that our baseline first-order algorithm and the BBK algorithm leads to the same results up
to the first order of approximation.

First, just like our approach, note that BBK builds a first order approximation of logPt ,t+1 (c)
in each period. We build this approximation directly by fitting a function log cPt ,t+1 (c) to geo-
metric price indices and measures of real consumption computed in the previous period. BBK
builds this approximation in three steps: 1) it performs I regressions to find product-specific func-
tions Òωi ,t (y), 2) it combines them to construct log cP †

t ,t+1 (y) according to Equation (A.19), and
3) it inverts eχt (·) to find χt (·). We thus have

log cPt ,t+1 (c)≡ log cP †
t ,t+1 (χt (c))≈ logPt ,t+1 (c) .

Next, both algorithms construct approximations for the mapping from total expenditure to
real consumption in the next period eχt+1 (·), using the integral in Equation (14). BBK performs
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this step explicitly by solving for the collection of ck ’s through the nonlinear equation

log ck = log eχt+1 (yk)≈ log yk −
t−1
∑

τ=0

log cPt ,t+1 (ck) , (A.22)

for a grid of values of total expenditure yk . Instead of solving this nonlinear equation, we perform
this step for the observed values of total expenditure yn

t+1 in the data by applying another first
order approximation. From Equation (A.22), we have

log c n
t+1 ≈ log yn

t+1−
t−1
∑

τ=0

log cPt ,t+1

�

c n
t+1

�

,

≈ log yn
t+1−

t−1
∑

τ=0



log cPt ,t+1 (c
n
t )+

∂ log cPt ,t+1 (c)
∂ log c

�

�

�

�

�

c=c n
t

log
�

c n
t+1

c n
t

�



 ,

≈ log
�

yn
t+1

yn
t

�

− log cPt ,t+1 (c
n
t )+ log c n

t +
∂

∂ log c

�

t−1
∑

τ=0

log cPt ,t+1 (c)
�
�

�

�

�

�

c=c n
t

log
�

c n
t+1

c n
t

�

,

where in the second line, we have used a first-order Taylor series expansion of cPt ,t+1

�

c n
t+1

�

around
c n

t . The last line leads to our update in Equation (19) when we note that πn
G,t ≈ log cPt ,t+1 (c

n
t ).

Thus, we have shown that our first-order update rule and the solution to BBK’s fixed-point
problem are equivalent up to the first order of approximation. Both approaches rely on a first
order approximation to Equation (14). While ours performs a Newton step to yield an explicit
solution, BBK frame this step as a fixed point problem. We reserve the applicaiton of such a fixed
point problem for our second order Algorithms A.1 and A.3 that lead to lower approximation
errors.

For completeness, we also provide another second-order extension of the BBK algorithm.
Consider the following second-order approximation of Equation (14):

log eχ b
t (y) = log y − 1

2

t−b−1
∑

τ=0

I
∑

i=1

�

ωi ,τ

�

χ b
τ

�

eχ b
t (y)

��

+ωi ,τ+1

�

χ b
τ+1

�

eχ b
t (y)

���

log
�

piτ+1

piτ

�

.

Starting with eχ b
b (y) = y and t = 0, for each period t , perform the following succession of steps:

1. Start with setting log eχ b
t+1(y) = log eχ b

t (y)−
∑

i ωi ,t (y) log
�

piτ+1
piτ

�

.

2. Solve for ck for a dense grid of points yk ∈
�

y, y
�

:

log ck = log yk −
1
2

t−b−1
∑

τ=0

I
∑

i=1

�

ωi ,τ

�

χ b
τ (ck)

�

+ωi ,τ+1

�

χ b
τ+1 (ck)

��

log
�

piτ+1

piτ

�

.
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3. Update eχ b
t+1 (y) by ensuring that it is a best fit to the collection of {(yk , ck)}.

4. Go back to step 2 until all ck ’s converge.

Other Differences between Our Algorithms and the BBK Algorithms As we saw above,
subject to decisions about where to apply the approximations, the theory behind BBK’s approach
is the same as ours. However, BBK features two additional differences from our approach in terms
of implementation details: 1) it involves performing I regressions per period (whereas we perform
only one) and 2) it restricts the range of values of real consumption over which estimates can be
recovered.

First, as we saw, BBK choose to approximate cPt ,t+1 (c) by running I different estimations
product-by-product. In contrast, our approach first aggregates price changes at the household
level and then performs a single estimation. We can simply modify the BBK algorithm to simplify
the estimation step along the lines of our approach. To achieve this, at time period t , we may
estimate coefficients bαk ,t such that

log cP †
t ,t+1 (y) =

∑

k

bαk ,t fk (y) ,

best fits the observed collections of geometric indices πn
G,t and total expenditure yn

t across house-
holds n in period t . Then, we solve for values of eχt+1 (y) in the following equation

log eχt+1 (y)≈ log y −
t
∑

τ=0

log cP †
τ,τ+1

�

χτ
�

eχt+1 (y)
��

. (A.23)

This algorithm successively recovers the function eχt+1 (y) starting from t = 0.
The second difference between the BBK algorithm and ours stems in different approaches

toward the extrapolation of the expenditure function beyond the range of values observed in
the data. BBK emphasize that they do not allow for any extrapolation of the function cP †

t ,t+1 (y)
outside the range of observed values of total expenditures

�

y
t
, y t

�

at time t . Based on this re-
striction, in the first step of the “fixed-point” algorithm, at time t = 1, we have log eχ1 (y) ≈
log y − log cP †

0,1 ( eχt (y)), where we have used the fact that χ0 (c) = c . As a result, we can solve
for eχ1 (y) only for values of y such that eχ1 (y) ∈

�

y
0
, y0

�

.A3 Following this logic, and letting y∗
t

A3This choice is far more restrictive in the case of their “iterative algorithm,” in which case, in the first step they let
log eχ1 (y)≈ log y− log cP †

0,1 (y) and solve for eχ1 (y) only for values of y such that y ∈
�

y
0
, y0

�

. Induction on this logic

implies that we can solve for eχt (y) only for values of y such that y ∈
�

y
0
, y0

�

. In this case, even a moderate growth in
nominal consumption expenditure implies that, over a long time horizon, the total expenditure of most households
may not overlap with the range of values observed in the initial period. As a result, the “iterative” algorithm of BBK
may be instructive for intuition but imposes restrictions that are too strong to be taken to the data.
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and y∗t be defined as the levels of total expenditure at time t that get mapped to the levels of real
consumption y

0
and y0, respectively

y∗
t
≡ χt

�

y
0

�

, y∗t ≡ χt (y0) ,

we can solve for eχt (y) for y ∈
�

y∗
t
, y∗t
�

in the “fixed-point” algorithm. Thus, in environments
featuring growth in real consumption, this algorithm fails to recover real consumption for the
richest households.

In contrast, our approach does not suffer from this limitation, since we allow the extrapola-
tion of the mapping from real consumption to expenditure outside the range of observed values,
relying on the smoothness of the expenditure function. Since V (y;pt ) is the indirect utility func-
tion and thus the inverse of the expenditure function, it is smooth when the expenditure function
is smooth. Therefore, the real consumption function eχt (·) ≡ E (V (y;pt ) ;pb ) also inherits the
smoothness property, implying that the behavior of the function eχt (y) near the upper bound
of y∗t can be extrapolated to the neighboring region y > y∗t . For this reason, we allow the algo-
rithm to extrapolate the fitted relationship eχt (·) to outside the domain of values

�

y∗
t
, y∗t
�

. As we
saw in our simulation exercise Section 2.4, our method indeed recovers accurate estimates of real
consumption in an environment featuring sizable growth in real consumption.

Using the above insight, we can in fact develop an extension of the BBK algorithm that allows
for extrapolation outside the range the study: in period t , once we solve for ct = eχt (yt ) in the
range

�

y∗
t
, y∗t
�

as described above, we regress ct on a polynomial of yt in this range. We then use
the estimated polynominal to obtain ct for all other values of yt in the data, i.e. we extrapolate
the function eχt (·) to y > y∗t and y < y∗

t
. This approach allows us to recover real consumption

for very high-income or very low-income households. Using simulations, we demonstrate that
this extension of the BBK algorithm is indeed accurate outside the range

�

y∗
t
, y∗t
�

; we report these
results in Appendix B.2.

Empirical Comparison of Our Algorithms and the BBK Algorithm In Appendix B.2, we
employ a simulation exercise to show that our baseline first-order algorithm and the BBK al-
gorithm have fairly similar performance in terms of approximation error, whereas our baseline
second-order algorithm performs substantially better than both. In Appendix Figure D.9, we
also document that our baseline first-order algorithm and the BBK algorithm yield similar re-
sults when applied to the U.S. data.

A13



A.4 Approximating Welfare Changes with Observed Heterogeneity

In this Section, we provide the algorithms that allow us to approximate changes in real consump-
tion growth to the first and second orders of approximation in the presence of changes in house-
hold preferences that relate to observable household characteristics.

First-Order Algorithm

Algorithm A.4. Let bc n
b ≡ c n

b ≡ c n
b and consider a sequence { fk(c ,x)}KN

k=0 of log-power functions of c
and x where KN depends on N, the number of consumers in the cross-section. For each t ≥ b , apply
the following steps:

1. Nonparametrically fit the true price index between periods t and t + 1:

Find the coefficients
�

bαk ,t

�KN

k=0
solving the following problem:

min
(αk ,t)

K

k=0

N
∑

n=1

�

πn
t −

KN
∑

k=0

αk ,t fk (bc
n
t ,xn

t )
�2

, (A.24)

where πn
t ≡ logPG

�

pt ,s
n
t ;pt+1,s

n
t+1

�

.

2. Estimate the values of real consumption for consumers in period t + 1:

Compute the real consumption in the next period for each household:

logbc n
t+1 = logbc n

t +
1

1+ bΛt+1 (bc n
t ;xn

t )

�

log
�

yn
t+1/yn

t

�

−πn
t −

D
∑

d=1

bΓd ,t+1 (c
n
t ;xn

t ) · log

�

xd ,t+1

xd ,t

��

(A.25)

where we have defined the approximate nonhomotheticity correction function as:

bΛt+1 (c ;x) =
KN
∑

k=0

�

t+1
∑

τ=b+1

bαk ,τ

�

∂ fk (c ,x)
∂ log c

, (A.26)

and the following approximation for the characteristic-d correction function:

bΓd ,t+1 (c ;x) =
KN
∑

k=0

�

t+1
∑

τ=b+1

bαk ,τ

�

∂ fk (c ,x)
∂ log xd

.

Second-Order Algorithm Next, we provide a second-order approximation holding under ar-
bitrary observed heterogeneity across households. Algorithm A.5 thus provides a generalization
of Algorithm A.1 to the cases involving observed heterogeneity.
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Algorithm A.5. Let bc n
b ≡ c n

b ≡ yn
b and consider a sequence {gk(c ,x)}KN

k=0 of log-power functions of
c and x where N is the number of households in the cross-section. For each t ≥ b , apply the following
steps:

1. Initialize the values of the real consumption in period t + 1 using the first-order algorithm:

Initialize the values of the real consumption bc n,(0)
t+1 for each household at t + 1 using Equations

(22)–(21) as in Algorithm A.4.

2. Apply the loop to find the real consumption in period t + 1:

Iterate over the following steps over τ ∈ {0,1, · · · } until convergence for some tolerance ε� 1.

(a) Nonparametrically fit a first-order term needed for finding the true price index between
periods t and t + 1:

Solve for the coefficients
�

bα†
k ,t

�K

k=0
in the following problem:

min
(α†

k ,t)
K

k=0

N
∑

n=1

�

πn
t −

K
∑

k=0

α†
k ,t fk

�

bc n,(τ)
t+1 ,xn

t+1

�

�2

, (A.27)

where πn
t ≡ logPG

�

pt+1,s
n
t+1;pt ,s

n
t

�

.

(b) Nonparametrically fit the true price index between periods t and t + 1:

Find the coefficients
�

bβk ,t

�K

k=0
solve the following problem:

min
(bαk ,t)

K

k=0

N
∑

n=1

�

πn,∗
t +ρ

n,(τ)
t −

K
∑

k=0

bβk ,t fk (bc
n
t ,xn

t )
�2

, (A.28)

where πn,∗
t ≡ PT

�

pt ,s
n
t ;pt+1,s

n
t+1

�

and where ρn,(τ)
t is defined as:

ρn,(τ)
t ≡ 1

4

K
∑

k=0

bα†
k ,t





∂ f k (bc
n
t ,xn

t )
∂ log c

+
∂ f k

�

bc n,(τ)
t+1 ,xn

t+1

�

∂ log c



 log

 

bc n,(τ)
t+1

bc n
t

!

(A.29)

+
1
4

D
∑

d=1

K
∑

k=0

bα†
k ,t





∂ f k (bc
n
t ,xn

t )
∂ log xd

+
∂ f k

�

bc n,(τ)
t+1 ,xn

t+1

�

∂ log xd



 log

�

xd ,t+1

xd ,t

�

.

(A.30)

(c) Estimate the values of real consumption for consumers in period t + 1:

A15



Update the real consumption in the next period for each household:

logbc n,(τ+1)
t+1 = logbc n,(τ)

t +
1

1+ 1
2

�

bΛt (bc n
t ;xn

t )+ bΛt+1

�

bc n,(τ)
t+1 ;xn

t+1

�� (A.31)

×
�

log
�

yn
t+1

yn
t

�

− 1
2

D
∑

d=1

�

bΓd ,t (c
n
t ;xn

t )+bΓd ,t+1

�

c n
t+1;x

n
t+1

�

�

· log

�

xd ,t+1

xd ,t

��

,

(A.32)

where we have defined the approximate correction functions as:

bΛt+1 (c ;x) =
K
∑

k=0

�

t+1
∑

τ=b+1

bβk ,τ

�

∂ fk (c ,x)
∂ log c

, (A.33)

bΓd ,t (c ;x) =
KN
∑

k=0

�

t+1
∑

τ=b+1

bαk ,τ

�

∂ fk (c ,x)
∂ log xd

, (A.34)

(d) Stopping criterion: if maxn

�

�

�
bc n,(τ+1)

t+1 − bc n,(τ)
t+1

�

�

�< ε and set bc n
t+1 ≡ bc

n,(τ+1)
t+1 .

A.5 Proofs and Derivations

Section A.5.1 presents the proofs of all the results in the main text. Some of these proofs in turn
rely on additional lemmas that are presented and proved in Section A.5.2 below.

A.5.1 Proofs of the Main Lemmas and Propositions

Proof of Lemma 1. First, using χ b
t (c)≡ E

�

M−1
b (c) ;pt

�

, note that

∂ logχ b
t (c)

∂ log c
=
∂ log E (u;pt )
∂ log u

�

�

u=M−1
b
(c) ·

∂ log M−1
b (c)

∂ log c
,

= ∂ log E(u;pt )/∂ log u
∂ log E(u;pb )/∂ log u

�

�

u=M−1
b
(c),
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where in the second equality, we have used the fact that
∂ log M−1

b
(c)

∂ log c = 1
∂ log E(u;pb )/∂ log u

�

�

u=M−1
b
(c).

Then, using Proposition 1 and Λb
t (c)≡

∂ logP b
b ,t (c)

∂ log c = ∂ logχ b
t (c)

∂ log c − 1,we have:

d log c b2
t

d log c b1
t

=
1+Λb1

t

�

c b1
t

�

1+Λb2
t

�

c b2
t

� =

∂ logχ b1
t (c)

∂ log c

�

�

�

�

�

c=c b1
t

∂ logχ b2
t (c)

∂ log c

�

�

�

�

�

c=c b2
t

, (A.35)

=

∂ log E(u;pt )/∂ log u

∂ log E(u;pb1)/∂ log u

�

�

�

�

�

u=ut

∂ log E(u;pt )/∂ log u

∂ log E(u;pb2)/∂ log u

�

�

�

�

�

u=ut

=
∂ log E

�

u;pb2

�

/∂ log u

∂ log E
�

u;pb1

�

/∂ log u

�

�

�

�

�

u=ut

,

=
∂ logχ b1

b2
(c)

∂ log c

�

�

�

�

�

c=c b1
t

= 1+Λb1
b2

�

c b1
t

�

= 1+
∂ logP b1

b1,b2
(c)

∂ log c

�

�

�

�

�

c=c b1
t

.

Proof of Lemma 2. From the definition of the true price index in Equation (3), we have logP b
t ,t+1 (c) =

logχ b
t+1 (c)− logχ b

t (c). Following Lemma A.2 in Appendix A.5.2 and using a first-order Taylor
series expansion of the expenditure function χ b

t+1 (c) ≡ E
�

M−1
b (c) ;pt+1

�

around the vector of
prices pt , we find:

logP b
t ,t+1 (c) =

∑

i

ωi ,t

�

χ b
t (c)

�

log

�

pi ,t+1

pi ,t

�

+O
�

∆2
p

�

, (A.36)

where we have used Shephard’s lemma in the second step to write the price elasticity of the
expenditure function as the expenditure share of the good, i.e.,

∂ log E
�

M−1
b (c) ;pt

�

∂ log pi ,t

≡ωi ,t

�

χ b
t (c)

�

. (A.37)

If the preferences are homothetic, we have si t =ωi ,t

�

χ b
t (ct )

�

=ωi ,t

�

χ b
t (c)

�

for all c and the
desired result follows. Otherwise, using Lemma A.2 and performing a first-order Taylor series
expansion of the share function, as a function of real consumption cτ around real consumption
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ct , we find:

ωi ,t

�

χ b
t (c)

�

= si t +
∂ ωi ,t

�

χ b
t (c)

�

∂ log c
· log

�

c
ct

�

+O
�
�

�

�log
�

c
ct

�
�

�

�

2�

,

where we have substituted si t = ωi ,t

�

χ b
t (ct )

�

on the right hand side. Substituting the above
equation in Equation (A.37) and using the definition of the geometric index in Equation (7), we
find

logP b
t ,t+1 (c) = logPG

�

pt ,st ;pt+1,st+1

�

+ log
�

c
ct

�

·
I
∑

i=1

∂ ωi ,t

�

χ b
t (ct )

�

∂ log ct

log

�

pi ,t+1

pi ,t

�

+O
�
�

�

�log
�

c
ct

�
�

�

�

2�

.

If c = ct , then we immediately find the desired result. If c = ct+1, we first use Lemma A.3 in

Appendix A.5.2 below to let
�

log
�

ct+1
ct

��2
= O

�

∆2
�

, where ∆ ≡ max
¦

∆p ,∆y

©

. Then, since
the expenditure function is second order continuously differentiable, we can use the fact that
∂ ωi ,t(χ b

t (ct ))
∂ log ct

is bounded, and thus the second term on the right-hand side of the equation above is
of the order O

�

∆2
�

, which yields Equation (16).
For the second order approximation, we apply the second-order expansion in Lemma A.2 in

Appendix A.5.2 to the expenditure function E
�

M−1
b (c) ;p

�

, which yields:

logP b
t ,t+1 (c) = log

E
�

M−1
b (c) ;pt+1

�

E
�

M−1
b (c) ;pt

� ,

=
1
2

I
∑

i=1

�

ωi ,t+1

�

χ b
t+1 (c)

�

+ωi ,t

�

χ b
t (c)

��

log

�

pi ,t+1

pi ,t

�

+O
�

∆3
p

�

, (A.38)

where we have again used Equation (A.37). Assuming homotheticity, we have that si t =ωi ,t

�

χ b
t (c)

�

for all c and the desired result follows. Otherwise, using Lemma A.2 in Appendix A.5.2, applied
to the Hicksian expenditure share function, we find:

ωi ,t

�

χ b
t (c)

�

= si t +
1
2

�

∂ ωi ,t

�

χ b
t (ct )

�

∂ log ct

+
∂ ωi ,t

�

χ b
t (c)

�

∂ log c

�

· log
�

c
ct

�

+O
�
�

�

�log
�

c
ct

�
�

�

�

3�

,

ωi ,t+1

�

χ b
t+1 (c)

�

= si t+1+
1
2

�

∂ ωi ,t+1

�

χ b
t+1

�

ct+1

��

∂ log ct+1

+
∂ ωi ,t+1

�

χ b
t+1 (c)

�

∂ log c

�

· log
�

c
ct+1

�

+O
�
�

�

�log
�

c
ct

�
�

�

�

3�

,

Substituting this expression in Equation (A.38), using Lemma A.3 in Appendix A.5.2 to write
�

�

�log
�

c
ct

�
�

�

�=O (∆), and using the definition of the Törnqvist index in Equation (7), we find:

logP b
t ,t+1 (c) = logPT

�

pt ,st ;pt+1,st+1

�
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+ 1
2 log

�

c
ct

�

·
I
∑

i=1

�

∂ ωi ,t

�

χ b
t (ct )

�

∂ log ct

+
∂ ωi ,t

�

χ b
t (c)

�

∂ log c

�

log

�

c
ct0

�

log

�

pi ,t+1

pi ,t

�

+ 1
2 log

�

c
ct+1

�

·
I
∑

i=1

�

∂ ωi ,t+1

�

χ b
t+1

�

ct+1

��

∂ log ct+1

+
∂ ωi ,t+1

�

χ b
t+1 (c)

�

∂ log c

�

log
�

c
ct

�

log

�

pi ,t+1

pi ,t

�

+O
�

∆3� ,

(A.39)

where∆≡max
¦

∆p ,∆y

©

. Now, we use the third-order continuously differentiable property of
the expenditure function to find

∂ ωi ,t ′′
�

χ b
t ′′ (ct ′)

�

∂ log ct ′
=
∂ ωi ,t

�

χ b
t (ct )

�

∂ log ct

+O (∆) , t ′, t ′′ ∈ {t , t + 1} ,

which we use to substitute for the expressions within the square brackets in Equation (A.39).
This leads to the following result:

logP b
t ,t+1 (c) = logPT

�

pt ,st ;pt+1,st+1

�

+ log
�

(c)2

ct · ct+1

�

·
I
∑

i=1

∂ ωi ,t

�

χ b
t (ct )

�

∂ log ct

log

�

pi ,t+1

pi ,t

�

+O
�

∆3� .

Thus, letting c =pct · ct+1, the second term on the right hand side vanishes and we obtain Equa-
tion (17), as desired.

Proof of Proposition 2. First, note that since the expenditure function is second-order continu-
ously differentiable, using Lemma A.2 in Appendix A.5.2 for function ωi

�

χ b
t (c) ;p

�

around
(pt , ct )

′, we have

log
�

si t+1

si t

�

=
∑

i

∂ logωi

�

χ b
t (ct ) ;pt

�

∂ log pi t

log
�

pi t+1

pi t

�

+
∂ logωi

�

χ b
t (ct ) ;pt

�

∂ log ct

log
�

ct+1

ct

�

+O
�

∆2� ,

(A.40)
where∆≡∆p if preferences are homothetic, and∆≡

¦

∆p ,∆y

©

. Using the second order contin-

uously differentiable property of the expenditure function, we conclude that log
�

si t+1
si t

�

=O (∆).
For the Laspeyres price index formula, we have:

log PL = log

�

∑

i

si t
pi t+1
pi t

�

,

= log

�

1+
∑

i

si t log
�

pi t+1
pi t

�

+ 1
2

∑

i

si t

�

log
�

pi t+1
pi t

��2
+O

�

∆3�
�

,

A19



=
∑

i

si t log
�

pi t+1
pi t

�

+ 1
2

∑

i

si t

�

log
�

pi t+1
pi t

��2
− 1

2

�

∑

i

si t log
�

pi t+1
pi t

�

+ 1
2

∑

i

si t

�

log
�

pi t+1
pi t

��2
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+O
�

∆2� ,

= log PG +O
�

∆2� ,

where in the second equality we use the Taylor series expansion of exp (x) for x ≡ log
�

pi t+1
pi t

�

, and

in the second equality we use the Taylor series expansion of log (1+ x) for x ≡
∑

i si t log
�

pi t+1
pi t

�

+
1
2

∑

i si t

�

log
�

pi t+1
pi t

��2
+O

�

∆3
�

.
For the Paasche price index formula, we find:

log PP =− log

�

∑

i

si t+1
pi t

pi t+1

�

,

=− log

�

1−
∑

i
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∑

i
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log
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��2
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,

=
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∑

i

si t

�

log
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∑
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log
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��2
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=
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si t ×
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si t
× log

�
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+O
�

∆2� ,

= log PG +O
�

∆2� ,

where in the first equality we use the Taylor series expansion of exp (−x) for x ≡ log
�

pi t+1
pi t

�

, and in

the second equality we used the Taylor series expansion of log (1− x) for x ≡
∑

i si t+1 log
�

pi t+1
pi t

�

−
1
2

∑

i si t+1

�

log
�

pi t+1
pi t

��2
+O

�

∆3
�

. In the last equality, we use the fact that log
�

si t+1
si t

�

=O (∆) from
Equation (A.40) above.

For the Fisher price index formula, we repeat the same steps used in the arguments above for
the Laspeyres and Paasche indices:

logPF =
1
2

logPL+
1
2

logPP ,

=
1
2

log
�

si t

�

pi t+1
pi t

��

− 1
2

log
�
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�
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,

=
1
2
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�
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∑
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∑
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��2
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∑
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log
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=
1
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∑

i

�

si t + si t+1

�

log
�
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+
1
4

∑
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∑
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+
1
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∑
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∑
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∆3� . (A.41)

To simplify this expression further, note that using Equation (A.40), we have

si t+1−si t
si t
= exp

�

log
�

si t+1
si t

��

− 1=O (∆) ,
∑

i

s i t

�

log
�

pi t+1
pi t

��m
=O (∆m) , 1≤ m,

where we have let s i t ≡
1
2

�

si t + si t+1

�

. Using this result, we can rewrite Equation (A.41) as

logPF = logPT −
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= logPT +O
�

∆3� .

Finally, for Sato-Vartia, we begin with the following approximation:
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�
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=
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= s i t

�

1+ 1
6

�

log
�

si t+1
si t

��2
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−
si t

4

�

si t+1
si t
− 1
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log
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si t+1
si t

�

+O
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��2
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��2
+O

�

∆3� ,

where in the second equality, we use a Taylor expansion of exp (x)−1 for x ≡ log
�

si t+1
si t

�

to simplify
si t+1
si t
− 1, and a Taylor expansion of 1− exp (−x) for x ≡ log

�

si t+1
si t

�

to simplify 1− si1
si t+1

. We use
the former approximation again in the fourth equality, as well as Equation (A.40). Substituting
this result in the definition of the Sato-Vartia price index formula, we find

logPS ≡

∑

i

�

si t+1−si t

log
� si t+1

si t

�

�

log
�

pi t+1
pi t

�

∑
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s j ,t+1−s j t

log
� s j ,t+1

s j t

�





,

=
logPT +O

�

∆3
�

1+O (∆2)
,

= logPT +O
�

∆3� ,

where we use the fact that
∑

i s i t = 1.

Proof of Proposition 3. We can write the growth in consumer expenditures as

d log E
�

M−1
b (ct ) ;pt ,xt

�

d t
=
∑

i

∂ log E
�

M−1
b (ct ) ;pt ,xt

�

d log pi t

d log pi t

d t
+
∑

d

∂ log E
�

M−1
b (ct ) ;pt ,xt

�

d log xd t

d log xd t

d t

+
∂ log E

�

M−1
b (ct ) ;pt ,xt

�

d log ct

d log ct

d t
,

where the left hand side equals d log yi t
d t and where we omit the base period superscripts b to sim-

plify the expression. The desired result follows from the observation that c = E
�

M−1
b (c) ;pb ,x

�

for all x.

Proof for Proposition A.1. From Lemma 2, we have that

log c n
b+1 = log yn

b+1− logPb ,b+1

�

c n
b+1

�

= log yn
b+1−π

n
G,b +O

�

∆2� . (A.42)

In the base period t = b + 1, Algorithm A.2 first nonparametrically approximates the mapping
eχb+1 (·) from total expenditure to real consumption at time t = b + 1, using an OLS regression
of the logarithm of households’ real consumption logbc n

b+1 ≡ log yn
b+1−π

n
G,b on the polynomials
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( fk ’s) of the logarithm of their total expenditure log yn
b+1. The resulting coefficients

�

bαk ,b

�KN

k=0

solve Equation (A.10) for t = b + 1.
We next invoke a result by Newey (1997) on the asymptotics of the nonparametric estimators

of derivatives of functions based on power series. We have summarized this result in Lemma
A.4, presented in Appendix A.5.2 below. Here, variables yn

b+1 and bc n
b+1 correspond to the vari-

ables xn and yn in the statement of lemma, and the function eχ b
b+1 (·) corresponds to the function

f (·) therein. The lemma implies the following bound on the error of the approximation of the
elasticity of the mapping from total expenditure to real consumption:

∂ log eχ b
b+1 (y)

∂ log y
=

KN
∑
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bαk ,b+1 f ′k (log y)+Op

�

K3
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N
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N

��

. (A.43)

Using the above bound and the update rule in Equation (A.12), we find that
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b+1

�

=
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∆2� ,

= log

�
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+Op
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K3
N

�s
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N
·∆4+K−(m−1)
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∆

�

+O
�

∆2� , (A.44)

where in the first equality, we have used Lemma A.1 presented in Appendix A.5.2 below, in
the second equality, we have substituted from Equation (A.43) and have used the fact that the
term inside the square brackets is of the order O (∆), and where in the last equality, we have
substituted for the update rule in Equation (19), and for logbc n

b+1 ≡ log yn
b+1−π

n
G,b from Equation

(A.42). Importantly, the assumption that K7
N∆

2/N and K−(m−4)
N ∆−1 remain bounded as N and

KN grow toward infinity, which implies that the first error term in Equation (A.44) has, at most,
the same order as the second one. We thus find

log

�

c n
b+2

c n
b+1

�

= log

�

bc n
b+2

bc n
b+1

�

+Op

�

∆2� .

In period t = b +2, Algorithm 1 nonparametrically approximates the mapping eχb+2 (·) from
total expenditure to real consumption at time b + 2, using an OLS regression of the logarithm
of households’ real consumption bc n

b+2 on the polynomials ( fk ’s) of the logarithm of their total
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expenditure. The resulting coefficients
�

bαk ,b

�KN

k=0
solve Equation (20) for t = b + 2. Following

the same logic as above, we again apply Lemma A.4 again, noting that now bcb+2 has accumulated
errors of order O

�

∆2
�

from the approximations in the two successive prior periods. With slight
abuse of notation, we can then write

∂ log eχ b
b+2 (y)

∂ log y
=

KN
∑

k=0

bαk ,b+2 f ′k (log y)+Op

�

K3
N

�s

KN

N
·
�

2∆2�2+K−(m−1)
N

��

. (A.45)

By induction, applying the same logic to different iterations of the algorithm across successive
time period, we find

log
�

c n
t+1

c n
t

�

=O
�

∆2�+ Op

�

K3
N

�s

KN

N
· |t − b |2 ∆4+K−(m−1)

N

�

∆

�

,

where we have used

∂ log eχ b
t+1 (y)

∂ log y
=

KN
∑

k=0

bαk ,t+1 f ′k (log y)+Op

�

K3
N

�s

KN

N
· |t − b |2×∆4+K−(m−1)

N

��

.

Noting that |t − b | ×∆≤ T ×∆=O (1), we find

log
�

c n
t+1

c n
t

�

= log
�

bc n
t+1

bc n
t

�

+O
�

∆2�+Op

�

K3
N

�s

KN

N
·∆2+K1−m

N

�

∆
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.

Again, given the assumption that K7
N∆

2/N and K−(m−4)
N ∆−1 remain bounded as N and KN grow

toward infinity, we know that Op

�

K3
N

�
q

KN
N ·∆

2+K1−m
N

�

∆
�

= Op

�

∆2
�

, and we reach the de-

sired result.

Proof for Proposition A.2. Starting at t = b , we start with a first-order approximation of the
log c n,(0)

b+1 = log c n
b+1+O

�

∆2
�

the next-period real consumption for each household. We perform

the estimation in Equation (A.13) to find the collection of estimates
�

bα(0)k ,b+1

�KN

k=0
. Applying the

results of Newey (1997) on the asymptotics of the nonparametric estimators of derivatives of
functions based on power series, re-stated again in Lemma A.4 in Appendix A.5.2, we find

∂ log eχ b
b+1 (y)

∂ log y
=

KN
∑

k=0

bα(0)k ,b+1 f ′k (log y)+Op

�

K3
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��

.
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This allows us to approximate bΛn,(0)
b+1 from Equation (A.14) to find

∂ log eχ b
b+1

�

yt+1

�

∂ log yt+1

= bΛn,(0)
t+1 +Op

�

K3
N

�s

KN

N
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��

,

further implying

�
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N
·∆4+K−(m−1)

N

��

.

Since eχ b
b (y) = y is known and we have bΛn

b ≡ 1 in Equation (A.15), we can now use the second-
order case in Lemma A.1 to derive the following bound on the approximation error of the update
rule in Equation (A.14) to find

log

�

c n
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= log
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.

Assuming KN →∞ and K7
N/N → 0, we can apply the same argument in the next step (τ = 1)

again to find

∂ log eχ b
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∂ log y
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which then implies that for all τ > 1, we have:
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.

Using the fact that K7
N∆

2/N and K−(m−4)
N ∆−2 remain bounded as N and KN grow toward infinity

and∆ goes to zero, we then find

Op









√
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=Op

�

∆3� ,

implying log
�
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b+1
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b

�

= log
�
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b+1
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b

�

+Op

�

∆3
�

.

In period t = b + 2, we again start with log c n,(0)
b+2 = log c n

b+2 +O
�

∆2
�

from the first-order
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algorithm. For this period, Lemma A.4 in Appendix A.5.2 implies for iteration τ = 0 that
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From Equation (A.14) and using Lemma A.1, we find

log
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Iterating the above logic over iterations τ and over the successive time periods t ≥ b + 1, and
noting that the error in logbc n

t is bounded by T ×Op

�

∆3
�

=Op

�

∆2
�

leads to the desired result.

A.5.2 Additional Lemmas

In this section, we derive the additional lemmas and propositions used in some of the steps of the
main proofs in Section A.5.1.

Lemma A.1. Assume that the expenditure function E (·; ·) is third-order continuously differentiable.
Then the growth in real consumption between periods t and t + 1 satisfiesA4
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A4We can also show the following second-order approximation holds:
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Using this result leads to another alternative to the second-order Algorithm A.3.

A26



where the first-order Λb ,(1)
t+1 and second-order Λb ,(2)
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and where∆≡max
¦

∆p ,∆y
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, with∆y and∆p defined as in Equation (15).
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Using a first-order Taylor expansion of the left-hand-side of the equation above in terms of c b
t , as

well as Lemma A.3, we obtain:
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which gives us Equation (A.46) for the first equality in Equation (A.48), since E
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t (c). Since eχt (χt (c)) = c , the second equality in that equation then follows.
Next, in Equation (A.50), we use Lemma A.2 for a vector of variables (p, c)′ to find:
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where in the second equality we use Shephard’s lemma, as well as the definition of the mapping
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χt (c)≡ E
�

M−1
b (c) ;p

�

. Noting again that eχt (χt (c)) = c , Equation (A.47) follows.

Lemma A.2. Consider a function f (x) defined in the space of x ∈ RI . If f (·) is second order
continuously differentiable, we have:
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and if it is third order continuously differentiable, we have:
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where we have defined δ ≡maxi |yi − xi |.

Proof. Using Taylor’s series expansion, we have
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From Taylor’s theorem, we have the bound|R2 (y)| ≤
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value of the second order derivatives within the ball of radius |y−x| around x. This implies
that the absolute value of the residual can be bounded above by I 2
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, which leads to
Equation (A.51).

Following similar steps, we can show that if function f is third order continuously differen-
tiable, we have:
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Together, the two equations imply:
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This gives us the desired result in Equation (A.52), since:
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for some M > 0.

Lemma A.4. Assume that we observe (yn, xn)Nn=1 such that

yn = f (xn)+ εn,

where |εn|< B∆ε for some finite value of B.
If the observed variables are scalars yn, xn ∈R, we assume the following conditions are satisfied:

1. xn is distributed according to a probability distribution function that is bounded away from
zero over the interval [x, x].

2. The function f (·) is continuously differentiable of order m over the interval [x, x].

3. Functions gk (z) denote Legendre polynomials of order k ≤KN .
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If instead the observed and underlying variables are vectors yn, xn ∈ RJ for J ≥ 2, we assume the
following conditions are satisfied:

1. Underlying vectors xn belong to a Cartesian product of compact connected intervals, such that
its probability distribution is bounded away from zero over this set.

2. The function f (·) is an analytic function, that is, continuously differentiable of order m for any
positive integer m, over the same compact connected set where xn is defined.

3. Functions gk (x)’s are of the form gk (x) =
∏

j egk j

�

x j

�

, where x j is an element of the J -
dimensional vector z and where egk j

(x) is the Legendre polynomials of order k j such that
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Then, we can bound the errors in the approximations of the derivatives of function f (·) according to
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for any element z j of z, where m is an arbitrary integer number when f (·) is an analytic function.

Proof. Define g (x) ≡
�

g0 (x) , · · · , gk (x) , · · · , gKN
(x)
�t

where superscript t stands for the trans-

pose of the matrix and where KN denotes the number of Legendre functions defined in the state-
ment of the lemma that satisfy

∑

j k j ≤KN . Let

G≡
�

g
�

x1� , · · · ,g (xn)
�t ,

and define

bα≡ (GtG)−1Gt y,

The proof replicates the proof of Theorem 1 of Newey (1997) for the case of power series, approx-
imating the derivatives of the function to establish the convergence rate for the approximation
based on G. First, note that Assumptions 1 and 2 in the statement of the lemma correspond to
Assumptions 8 and 9 of Newey (1997). The discussion in Newey (1997, page 157) shows that
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Assumption 3 is satisfied for the first derivative function such that:A5
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where ‖· · · ‖ corresponds to the Euclidean norm, and where m is any arbitrary integer number
in the case of J > 1 where function f is analytic. It follows from the same steps as in the proof of
Theorem 1 of Newey (1997) that:
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with the only difference being the fact that hereE [εnεn′] is not a constant in our case, but instead
we have E [εnεn′] =O

�

∆2
ε

�

.

B Additional Simulation Results

In this appendix, we report additional results from our illustrative simulation exercise in Section
2.4 in the main text. We first show how the mapping between real consumption and total ex-
penditure χ b

t (·) changes over time depending on the covariance between income elasticities and
inflation across products. We then use the simulation to assess the accuracy of our algorithm in
estimating changes in real consumption over time.

B.1 The Evolution of the Mapping between Real Consumption and Ex-

penditure

We document how the mapping between real consumption and expenditure χ b
t (·), defined in

Equation (2), evolves over time, depending on the sign of the covariance between income elas-
ticity and inflation. We first consider the case with a positive covariance, which is illustrated in
Figures B.1a and B.1b. These figures compare the mapping in terms of real consumption between
the nonhomothetic and homothetic specifications, with the initial (b = 0) and the last (b = 70)
periods as the base, respectively.A6 The figures depict how the expenditure functions change over

A5In the notation of Newey (1997), this case corresponds to r ≡ J , d = 1, s = m, α = m − 1, and 2d + 1 = 3.
When J > 1 and the function is analytic, then the bound holds for any positive integer α, including m− 1.

A6Specifically, we compare the nonhomothetic specification against a homothetic CES specification with
(σ ,εa ,εm ,εs ) = (0.26,1,1,1).
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Figure B.1: Example: The Expenditure Function χ b
t (·)

(a) Positive Covariance/Initial Base (b = 0) (b) Positive Covariance/Initial Base (b = 70)

(c) Negative Covariance/Final Base (b = 0) (d) Negative Covariance/Final Base (b = 70)

Note: The figure shows the change over time in the mapping between real consumption and expenditure, for the preferences defined in
Equation (23) with parameters corresponding to a nonhomothetic CES (σ ,εa ,εm ,εs ) = (0.26,0.2,1,1.65) (nhCES) and homothetic CES
(σ ,εa ,εm ,εs ) = (0.26,1,1,1) functions. Panels (a) and (b) show the results for initial and final periods as the base for the case with positive in-
come elasticity-inflation covariance, respectively. Panels (c) and (d) show the same results for the case with negative income elasticity-inflation
covariance.

time in each case.
In the homothetic case, the expenditure function always has a log-linear form. Due to the

overall inflation in prices, the expenditure function uniformly shifts upward over time for the
homothetic CES preferences.

In the nonhomothetic case, let us first consider the initial period as the base in Figure B.1a. By
definition, the mapping begins as the identity function in the initial base period. As time passes,
the costs of achieving higher levels of real consumption rises faster, since to achieve these higher
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levels households need to shift their consumption toward goods featuring higher inflation. Thus,
the mapping χ b

t (·), which characterizers the expenditure function in terms of real consumption,
increasingly deviates from linearity and becomes more convex as time passes. The figure shows
that, compared to the homothetic case, the upward shift in the expenditure function is larger for
higher levels of real consumption.

Next, consider the final period as base as in Figure B.1b. By definition, in this case themapping
is the identity function in the final period. As we move backward in time, the costs of achieving
higher levels of real consumption falls faster, since to achieve these levels of welfare households
shift their consumption toward necessity products, whose were relatively more expensive in the
past. Thus, the mapping increasingly deviates from linearity and becomes more concave as we
move toward the initial period. The simulation thus illustrates that, regardless of the choice of
the base period, the expenditure function is more convex in later periods under nonhomothetic
preferences with a positive income elasticity-inflation covariance.

Figures B.1c and B.1d examine the same patterns in the case with a negative covariance be-
tween price inflations and income elasticities. In this case, the mapping becomes more concave
over time, since now consumers shift the composition of their expenditures toward goods that
have lower inflation. With the initial period as base, the mapping begins with a log linear form
and becomes more concave as we move forward in time. With the final period as base, the map-
ping ends with the identity function in the last period and becomes more convex as we move
backward in time.

Accuracy of the Approximation Figures B.2a-B.2d documents the errors in the measurement
of real consumption, using the first-order nonhomotheticity correction following Algorithm 1
or implementing the standard, uncorrected homothetic formula. As previously, the results are
reported for different base periods and income elasticity-inflation covariances. To carry out this
analysis, we use the underlying preference parameters to compute the correct value of the real
consumption c b ,n

t for each household n at each point in time t , and compare that value with the
approximate value bc b ,n

t found with our algorithm or with the standard, uncorrected measure.
The figure shows that the standard approach leads to substantial errors in the inferred mea-

sures of real consumption. Under the set of parameters considered here, after 70 years, this error
grows for some households to be of the same order of magnitude as the correct real consumption.
In contrast, applying the first-order correction of Algorithm 1 reduces the error by several orders
of magnitude. Thus, the simulation shows that the algorithm can correct for the errors in the
standard approach to measuring real consumption growth that stem from nonhomotheticity.

Finally, Figures B.3a-B.3d compare the sizes of the approximation error with the first-order
approximation approach of Algorithm 1 or the recursive approach of Algorithm A.1. The figures
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Figure B.2: nhCES Example: Nonparametric Approximation of Real Consumption

(a) Positive Covariance/Initial Base (b = 0) (b) Positive Covariance/Final Base (b = 70)

(c) Negative Covariance/Initial Base (b = 0) (d) Negative Covariance/Final Base (b = 70)

Note: The figures compare the error in the approximate value of real consumption between the geometric price index formula and the one
corrected based on the first-order Algorithm 1. The correct value of real consumption is calculated based on the underlying parameters
of the nhCES preferences. The panels show the error for the choices of base period (a) b = 0 and (b) b = 70 with the positive income
elasticity-inflation covariance and (c) b = 0 and (d) b = 70 with the negative covariance.

highlight that the second-order approximation of Algorithm A.1 leads to lower approximation
errors.

Extension to Other Values of Inflation-Income Elasticity Covariance To show how the re-
sults extend to other ranges of the values of covariance between price inflations and expenditure
elasticities, we perform one last exercise with our illustrative simulation. We consider alterna-
tive trends in prices, varying the deviations between inflation in services and agriculture from
that in manufacturing (fixed to the average level of 3.19%) symmetrically from -2% to +2%. As
previously, we compare the chained measures of deflated nominal consumption growth with and
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Figure B.3: nhCES Example: Second vs. First-order Correction

(a) Positive Covariance/Initial Base (b = 0) (b) Positive Covariance/Final Base (b = 70)

(c) Negative Covariance/Initial Base (b = 0) (d) Negative Covariance/Final Base (b = 70)

Note: The figures compare the error in the approximate value of real consumption between the the first-order and second-order algorithms.
The correct value of real consumption is calculated based on the underlying parameters of the nhCES preferences. The panels show the error
for the choices of base period (a) b = 0 and (b) b = 70 with the positive income elasticity–inflation covariance and (c) b = 0 and (d) b = 70
with the negative covariance.

without our correction. Figure B.4 reports the error in the approximated values of average real
consumption, depending on the choice of the base period.A7 As previously, the figure considers
two cases, with either positive or negative income elasticity–inflation covariances.

The figure shows that, when income elasticities are uncorrelated with the level of inflation
across goods, the uncorrected measures approximate the correct values with negligible errors.
However, as the covariance deviates from zero, the bias in the uncorrected measures grows. As the

A7We focus on the period that is most distant from the base period so that the error can potentially cumulate.
Thus, we report the error in the final period when the initial period is taken as base. Symmetrically, we report the
error in the initial period when the final period is taken as base.
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Figure B.4: Example: Real Consumption Error and Income Elasticity-Inflation Covariance

Note: The figure compares the error in the corrected and uncorrected approximations of the average final and initial real consumption for the
initial and final periods as base, respectively, as a function of the mean covariance between price inflations and expenditure elasticities over
the period.

covariance falls to around -0.6% per year, the error in the uncorrected measure grows to around
20% of the average real consumption.A8 In contrast, the error in the approximation achieved
with our nonhomotheticity correction remains close to zero over the entire range of values of
the covariance, which highlights the accuracy of our algorithm.

A8As the covariance grows above zero, the error initially rises but ultimately begins to fall for large and positive
values of covariance. This is because those scenarios lead to negligible growth in average household real consumption,
which mechanically reduces the size of the bias in the reduced-form indices.
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B.2 Comparison of the Performance of Alternative Algorithms

Comparison with Baqaee et al. (2022). We now use a simulation to compare the size of the ap-
proximation error in our algorithms and the alternative developed by Baqaee et al. (2022) (hence-
forth BBK), presented in Appendix A.3.3. We rely on the same simulation as in Section 2.4,
i.e. we consider the consumption behavior of a panel of 1,000 households over 70 periods, using
non-homothetic CES preferences over three products, with the same parameters as Comin et al.
(2021). As previously, we consider three illustrative cases featuring positive, negative, or no co-
variances between inflation and income elasticities. To be comparable with BBK, we implement
the algorithms using the money metric for the initial base period.

For each household, we recover real consumption using our two algorithms – first-order (de-
noted “JL1”) and second-order (denoted “JL2”), as well as the BBK algorithm, and we compare
the estimates to the true, model-based real consumption.A9 The root mean squared errors are
reported in Table B.1 for the log difference between the real consumption recovered by the algo-
rithm and actual (model-generated) real consumption.

Columns (1) and (2) of Table B.1 assess the performance of the first-order algorithms. Both
algorithms perform well, with small approximation errors regardless of the covariance between
income and inflation. The first-order JL algorithm is slightly more precise: compared with the
BBK algorithm, the RMSE is 32% smaller in the simulation with a positive covariance between
income and inflation, and 4% smaller with a negative covariance.

A9We use a sixth-order polynomial in the regression steps for our algorithms, and we show below that we obtain
similar results with polynomials of a lower order.
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Table B.1: Approximation Errors in Our Algorithms and the Alternative Suggested by Baqaee
et al. (2022) (BBK), RMSE

RMSE of First-order Algorithms RMSE of Second-order Algorithms

Covariance between JL1 BBK JL2
income elasticity and inflation (1) (2) (3)

None 4.74× 10−7 6.34 · 10−7 4.74× 10−7

Positive 9.29× 10−4 1.38× 10−3 5.25× 10−6

Negative 1.68× 10−3 1.75× 10−3 1.70× 10−5

Notes: In this table, we assess the accuracy of the real consumption recovered by our algorithms and the
BBK algorithm. Columns (1) and (2) compare the results of our first-order algorithm (“JL1”) and BBK.
Column (3) reports the performance of our second-order algorithm (“JL2”). We compare the values re-
covered by the algorithms to the true values from the model used to generate the simulated data. The
table reports the root mean squared error (RMSE) for the log difference between the real consumption
recovered by the algorithm and actual real consumption, across the 1,000 households in period 70 of our
simulated data. We run the comparison only for households for which the BBK algorithm can recover real
consumption, i.e. with no extrapolation step.

Column (3) of Table B.1 analyzes the performance of our second-order algorithm. As ex-
pected, this algorithm demonstrates much better accuracy. The approximation error is three
orders of magnitude smaller than the BBK algorithm with a positive covariance, and two orders
of magnitude smaller with a negative covariance.

Figure B.5 provides a more in-depth description of the approximation errors for the JL1,
JL2, and BBK algorithms along the real consumption distribution, using the same scale for all
algorithms to facilitate comparisons. Since the approximation error is almost null for the case
with no covariance, we report the results for the positive and negative covariance cases. Specifi-
cally, we plot the absolute log deviation across households in different time periods. The figure
shows that both algorithms are precise at all levels of real consumption in all periods, and that
our second-order algorithm perform particularly well. These results thus confirm the theoretical
result showing that the JL1 and BBK algorithms are equivalent to first order, and that the JL2
algorithm is significantly more precise.
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Figure B.5: Comparison of Approximation Errors between Our Algorithms and the Alternative
Suggested by Baqaee et al. (2022) (BBK), Absolute Log Deviations

Panel A: Positive Covariance b/w Income Elasticity and Inflation
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Panel B: Negative Covariance b/w Income Elasticity and Inflation

0
.0

02
.0

04
.0

06
.0

08
.0

1

Lo
g 

di
ffe

re
nc

e 
be

tw
ee

n 
es

tim
at

ed
an

d 
ac

tu
al

 re
al

 c
on

su
m

pt
io

n,
 a

bs
ol

ut
e 

va
lu

e

6 7 8 9 10
Real consumption, t=1 as base

t=70 t=50
t=10

Simulation Results, JL1 Algorithm,
Negative Covariance Case

0
.0

02
.0

04
.0

06
.0

08

Lo
g 

di
ffe

re
nc

e 
be

tw
ee

n 
es

tim
at

ed
an

d 
ac

tu
al

 re
al

 c
on

su
m

pt
io

n,
 a

bs
ol

ut
e 

va
lu

e

6 7 8 9 10 11
Real consumption, t=1 as base

t=70 t=50
t=10

Simulation Results, BBKM Algorithm,
Negative Covariance Case

0
.0

02
.0

04
.0

06
.0

08
.0

1

Lo
g 

di
ffe

re
nc

e 
be

tw
ee

n 
es

tim
at

ed
an

d 
ac

tu
al

 re
al

 c
on

su
m

pt
io

n,
 a

bs
ol

ut
e 

va
lu

e

6 7 8 9 10
Real consumption, t=1 as base

t=70 t=50
t=10

Simulation Results, JL2 Algorithm,
Negative Covariance Case

(i) JL1 (ii) BBK (iii) JL2

Notes: In this figure, we assess the accuracy of the real consumption recovered by the JL and BBK algo-
rithms. JL1 and JL2 respectively denote the first-order and second-order algorithms of JL. We compare
the values recovered by the algorithms to the true values from the model used to generate the simulated
data.

Additional results. We now report a few additional results. First, we compare the accuracy of
alternative algorithms. We first report the results obtained with our algorithms based on the real
consumption function, providing either a first-order approximation (denoted “JL1-RCF”) and or
a second-order approximation (denoted “JL2-RCF”). Table B.2 reports the results, using either a
fourth-order or sixth-order polynomial in the regression step of these algorithms. We find that
the second-order algorithm based on the real consumption function performs extremely well,
with an approximation error that is similar to our baseline second-order algorithm from Table
B.1. The first-order algorithm (JL1-RCF) performs quite similarly to the first-order algorithms
studied in Table B.1.

For completeness, we also report the performance of our baseline first-order and second-order
algorithms depending on the order K of the polynomial we use in the regression step. While the
baseline algorithm in Table B.1 used a sixth-order polynomial, we also implement the algorithm
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Table B.2: Approximation Errors for Our Alternative Algorithms

Covariance between income elasticity and inflation

None Positive Negative
Algorithm (1) (2) (3)

JL1-RCF, 4th-order polynomial 4.74× 10−7 1.67× 10−3 9.71× 10−4

JL1-RCF, 6th-order polynomial 4.74× 10−7 1.67× 10−3 9.54× 10−4

JL2-RCF, 4th-order polynomial 4.74× 10−7 1.78× 10−5 5.28× 10−5

JL2-RCF, 6th-order polynomial 4.74× 10−7 5.96× 10−6 2.36× 10−5

JL1, 2nd-order polynomial 4.74× 10−7 1.32× 10−3 2.07× 10−3

JL1, 4th-order polynomial 4.74× 10−7 9.30× 10−4 1.67× 10−3

JL1, 6th-order polynomial 4.74× 10−7 9.29× 10−4 1.68× 10−3

JL2, 2nd-order polynomial 4.74× 10−7 8.99× 10−4 1.73× 10−3

JL2, 4th-order polynomial 4.74× 10−7 9.14× 10−6 6.07× 10−5

JL2, 6th-order polynomial 4.74× 10−7 5.25× 10−6 1.70× 10−5

Notes: In this table, we assess the accuracy of the real consumption recovered by alternative algorithms.
We compare the values recovered by the algorithms to the true values from the model used to generate the
simulated data. The table reports the root mean squared error (RMSE) for the log difference between the
real consumption recovered by the algorithm and actual real consumption, across the 1,000 households in
period 70 of our simulated data. We report the results for the first-order algorithm based on real consump-
tion (“JL1-RCF”) and the second-order algorithm based on real consumption (“JL2-RCF”), using either
a fourth-order or sixth-order polynomial in the regression steps. We also report the performance of our
baseline first-order (“JL1”) and second-order (“JL2”) algorithms, using polynomials of orders 2, 4, or 6 for
the regression steps.

with second-order or fourth-order polynomial. The results are reported in Table B.2: we find
that the performance of the algorithm remains similar.

Second, we report the results of our extension of the BBK algorithm. We start by analyzing
the size of the approximation error when we fit the real consumption function with a second-
order polynomial, in the range of incomes for which the original BBK algorithm can run. The
results are reported in Figure B.6: we see that the error is very small, under 1% everywhere in
the range where the comparison can be drawn. This illustrates that a very simple polynomial can
accurately capture the smooth shape of the expenditure function. The size of the approximation
error can naturally be reduced further with higher-order polynomials.
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Figure B.6: Comparison of the Algorithm of Baqaee et al. (2022) (BBK) and An Extension based
on a Polynomial Fit, Log Deviations

Panel A: Positive Covariance b/w Income Elasticity and Inflation
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Notes: In this figure, we compare the estimates of real consumption obtained with the BBK algorithm and
our extended BBK algorithm, using a second-order polynomial to fit the real consumption function. We
perform the comparison in the range of incomes for which the original BBK algorithm provides estimates
of real consumption, i.e. where no extrapolation step is required. Our extended BBK algorithm fits the
real consumption function obtained by the original BBK algorithm with a second-order polynomial of
nominal income in each period.

Next, we report the accuracy of the real consumption recovered by our extended BBK algo-
rithm and our baseline algorithms (JL1 and JL2) when we consider households outside of the
range that can be studied by the original BBK algorithm. The results are reported in Table B.3
and show that the approximation errors are very small. These results show that our algorithms
produce accurate results for the full range of the utility, including outside of the interpolation
range required by the original BBK algorithm.

Overall, these simulation results highlight that several algorithms are able to recover the true
measure of real consumption at a high degree of accuracy, and that our second-order algorithms
are substantially more accurate than alternative first-order algorithms, including that suggested
by Baqaee et al. (2022).
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Table B.3: Comparison between Our Algorithms and Our Extension of the Alternative Sug-
gested by Baqaee et al. (2022) (BBK), RMSE, Outside of the Range Covered by the Original BBK
Algorithm

RMSE of First-order Algorithms RMSE of Second-order Algorithm

Covariance between JL1 Extended BBK JL2
income elasticity and inflation (1) (2) (3)

Positive 6.62× 10−4 6.94× 10−3 1.44× 10−4

Negative 1.23× 10−3 2.17× 10−2 6.07× 10−4

Notes: In this table, we assess the accuracy of the real consumption recovered by our algorithms. Columns
(1) and (2) compare the results of our baseline first-order algorithm (JL1) and our extended BBK algorithm.
Column (3) reports the performance of our baseline second-order algorithm (JL2). We compare the val-
ues recovered by the algorithms to the true values from the model used to generate the simulated data.
The table reports the root mean squared error (RMSE) for the log difference between the real consump-
tion recovered by the algorithm and actual real consumption, across the 1,000 households in period 70 of
our simulated data. We only perform the comparison outside of the range covered by the original BBK
algorithm, i.e. we analyze the accuracy of the algorithms when an extrapolation step is required.

C Data Appendix

In this appendix, we describe the data construction steps for our main analysis dataset, as well as
for robustness checks.

C.1 Dataset for the Main Analysis

Our main analysis dataset covers the period from 1955 to 2019, combining price series from
the Consumer Price Index (CPI) to household expenditure data from the consumer expenditure
survey (CEX).

Consumer Price Index dataset The Consumer Price Index (CPI) data series contain monthly
or quarterly price indexes for over 200 detailed product categories. The price series are avail-
able over various time frames.A10 To obtain a balanced panel of inflation series derived from the
CPI price indexes, whenever a category is missing we use a more aggregate series in the product
hierarchy as proxy, since higher-level series usually have longer time coverage.A11 The category-
level inflation rate is obtained by averaging these price series at the desired frequency (annual or
quarterly).

A10The data is available at https://download.bls.gov/pub/time.series/cu.
A11For example, series CUUR0000SEME (Health insurance) is a level 2 series beginning in 2005; filling it back

to 1955 requires using level 1 series CUSR0000SAM2 (Medical care services) for 1957 to 2005 and level 0 series
CUSR0000SAM (Medical care) for 1955 to 1956.
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Consumer Expenditure Survey datasets from 1984 to 2019 We obtain household expen-
ditures from the Consumer Expenditure Survey (CEX) public-use microdata.A12 Specifically,
we use the interview survey data, which covers the full consumption basket from 1990 to 2019.
Sampled households are interviewed at a quarterly frequency for four to five consecutive rounds,
and report monthly expenditures at the Universal Classification Code (UCC) level for the three
months prior to the interview month in each round. Households also provide socio-demographic
characteristics in each quarter of the survey, such as annual income and age of all household mem-
bers. We use self-reported before-tax annual income prior to 2004 and imputed annual income
in or after 2004 to classify households into income groups (e.g., deciles, quintiles, or percentiles)
in each quarter.A13

We restrict the expenditure data to only include the UCCs that appear in the annual hier-
archical grouping auxiliary files provided by BLS. Indeed, these auxiliary files define the set of
relevant UCCs that BLS uses to produce the CE summary tables of household expenditures by
socio-demographic characteristics.A14 Furthermore, we exclude the UCCs belonging to the cate-
gories “pensions & social security”, “life and other personal insurance”, and “education”, which
are long-run investments.A15 We thus obtain a dataset containing 598 UCC product codes.

We benchmark our data against official estimates provided by the BLS in CE summary tables.
Using the expenditure microdata for the relevant product UCCs, we calculate average annual
expenditure for 32 product categoriesA16 by income quintiles. Our results closely approximate
the values reported in the CE summary tables, but we do not match them exactly because CE
summary tables source expenditure data from both interview and diary surveys, while we only
utilize interview data. To be exactly consistent with the annual consumption patterns published

A12The data is available at https://www.bls.gov/cex/pumd_data.htm.
A13The main dataset is restricted to households with strictly positive before-tax income. In a robustness check, we

keep houesholds with zero imputed income from 2004 onwards. The results are similar (unreported).
A14The hierarchical grouping auxiliary files are only available back to 1997, so we apply the UCC restric-

tion as specified in the 1997 file to earlier years with minor adjustments that come from comparing our
estimates of average annual expenditure by product and income quintile with the CE tables from 1990 to
1996. The CE summary tables can be found at: https://www.bls.gov/cex/tables/calendar-year/
mean-item-share-average-standard-error.htm (2012 onwards); https://www.bls.gov/cex/csxstnd.
htm (prior to 2012).

A15For these categories, changes in returns to investment – and therefore the effective inflation rate for these cate-
gories – are difficult to measure accurately. Building a nonhomothetic price index accounting for savings and invest-
ment behavior is an important direction for future research, which is outside of the scope of this paper.

A16The 32 product categories are: food at home; food away from home; alcoholic beverages; shelter; utilities, fuels,
and public services; household operations; household furnishings and equipment; clothes for men and boys; clothes
for women and girls; clothes for children under 2; footwear; other apparel products and services; vehicle purchases
(net outlay); gasoline, other fuels, and motor oil; other vehicle expenses; public and other transportation; health
insurance; medical services; prescription drugs; medical supplies; fees and admissions; audio and visual equipment
and services; pets, toys, hobbies, and playground equipment; other entertainment supplies, equipment, and services;
personal care products and services; reading; education; tobacco products and smoking supplies; miscellaneous; cash
contributions; life and other personal insurance; pensions and social security.
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by BLS, we compute a scaling factor to adjust the expenditure microdata by the ratio between CE
table values and our estimates, such that all average annual expenditures match the CE summary
tables exactly, for each of the 32 product categories and income quintile.A17

BLS provides monthly expenditure microdata by UCC and households starting in 1990 only;
data prior to this date require special treatment. From 1980 to 1989, CEX microdata files are not
suitable for our analyses. Indeed, for the period 1982-1989, BLS does not provide expenditure
microdata at the UCC level. Moreover, in 1980 and 1981, expenditure microdata contain many
legacy UCCs that were no longer in use in 1997, which is the earliest year for which the hierar-
chical grouping auxiliary files are availalble; therefore we cannot reliably define the universe of
relevant UCCs for these two years. However, the BLS provides CE summary tables from 1984
onward,A18 which we combine with the 1990 microdata to obtain expenditure patterns from 1984
to 1989. Specifically, we assume that the expenditure shares for any given income group within
each of the 32 product categories remain the same as in the 1990 microdata, and we use the CE
summary table to adjust expenditure shares for each of the 32 categories from 1984 to 1989. The
scaling factors are computed at the level of before-tax income quintile and the 32 product cat-
egories from CE summary tables in each year. We then aggregate the microdata and calculate
average annual expenditures for the desired income groups and product categories. For the main
analysis dataset, we compute the average annual expenditures at the “before-tax income percentile
by UCC” level, using household project weights provided by CEX.A19

In all analysis and robustness datasets, we include a set of seven household characteristics that
can serve as controls in regression specifications: (1) the raw number of household members; (2)
family size with adjustment based on the OECD-modified equivalence scale;A20 (3) family size
after restricting to members aged 18 and over; (4) the average age of all household members; (5)
the average age of all household members aged 18 and over; (6) household raceA21; (7) the highest
level of education among all household members.A22

A17The scaling factor is applied to each of the “product categories by income quintile” cells.
A18CE summary tables from 2012 to 2020 can be found here. Historical summary tables from 1984 to 2011 can be

found here.
A19Since we use calendar year as the time unit, and households that are interviewed in February and March report

expenditures across two calendar years, we apply an adjustment to the survey weights as instructed by Section 6 of
the Consumer Expenditure Surveys Public Use Microdata Getting Started Guide, which can be found here.

A20According to the OECD-modified equivalence scale, the first adult in a household has an equivalence value of
1; any additional adult or child aged 14 and over has an equivalence value of 0.5; any child aged 13 and under has an
equivalence value of 0.3.

A21The majority race is chosen as to represent the household. In the event of a tie, the household race is randomly
determined.

A22When aggregating the data to the level of pre-tax income percentiles, for household race and highest level of
education, we convert each factor variable into multiple variables capturing the percentage of households corre-
sponding to each distinct value. Therefore, we have five variables expressed in precentages for race (Asian or Pacific
Islander, Black, White, Native American, Multi-race or Other), and eleven variablesor highest level of education
(Never attended, Some or completed elementary school, Some or completed middle school, Some high school (no
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Consumer Expenditure Survey datasets from 1955 to 1983 We also build a dataset tracking
households’ expenditure patterns back to 1955, using the expenditures shares at the level of 32
product categories in 1984, 1972 and 1960 documented in available CE summary tables.A23

The 1972 table provides annual average expenditures by income decile for 42 product cate-
gories. We harmonize these items with the 32 product categories available in summary tables
available from 1984 onward. Using the average annual expenditure levels by product categories
and income decile in 1972 and 1984,A24 we interpolate expenditure shares in each of the inter-
vening years, assuming constant increments in expenditure shares for each product category and
income decile.A25 As previously, we keep expenditure shares for any given income group within
each of the 32 product categories at the level observed in the 1990 microdata.

We follow analogous steps using the 1960 CE summary table, which provides annual average
expenditures for nine income brackets and 19 product categories, which we link to the 42 prod-
uct categories observed in 1972 by building a one-to-many crosswalk. To create meaningfully
comparable income groups between 1960 and 1972, we first convert the data structure from the
nine income brackets to income deciles.A26 We then interpolate expenditure shares between 1960
and 1972. We thus obtain a dataset matching CE summary tables exactly back to 1960. Given
that there is no CE table prior to 1960, we assume expenditure shares remain constant for the
period 1955-1960.

Finally, as with the main analysis dataset from 1984 to 2019, after making adjustments by the
scaling factors from the historical CE summary tables, we aggregate the microdata to “before-tax
income percentile by UCC” cells in each year.

Data on consumption expenditures by income and age Following the same data construc-
tion steps as for the main dataset on consumption expenditures by income groups and products,
we build an alternative dataset aggregating households into “income decile by age decile” cells.
Specifically, households are first assigned into before-tax income deciles, then further divided into

diploma), High school graduates, Some college (no diploma), Associate or professional degree, Bachelor’s degree,
Some graduate school (no diploma), Master’s degree, Doctorate degree).

A23Prior to 1990, we do not have reliable microdata at the household or UCC level but annual CE summary tables
on household expenditures are available by socio-demographic characteristics back to 1984. Prior to 1984, we do
not have CE summary tables except for years 1972 and 1960, which can be downloaded here and here.

A24BLS only provides summary expenditure table by income decile in 1972, and by income quintile in 1984. To
harmonize the income class and allow for direct comparisons, we first compute scaling factors at the level of income
quintiles using the 1984 table as benchmark. The scaling factor is applied to households depending on the income
quintile they belong to, and we then aggregate the household-level data to the level of income percentiles.

A25Results with alternative interpolation methods are similar (unreported).
A26We translate the boundaries of income brackets into percentiles using the 1960 before-tax income distribution

in the U.S.; we then assign income brackets to income deciles to maximize overlap.
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age deciles within each income decile based on the average age of all adults in the household.A27

Just like the main dataset, the microdata is adjusted so that we exactly match the CE summary
tables by income quintile from 1984 to 2020, as well as in year 1960 and 1972. As previously, we
use interpolation to obtain expenditure shares in intervening years. As a robustness check, we
calculate alternative scaling factors using CE summary tables by household head (reference per-
son) age bracket instead, while keeping all other data treatment unchanged, which yields similar
results (unreported).

Since the size of the bias from the household aging correction is governed by changes in av-
erage age over time, it is important to check the accuracy of the age data. We check that average
age in our household survey data matches the benchmark series of the UN World Population
Prospects. Average age in our data is close to this external benchmark. To guarantee an exact
match, we apply a year-specific scaling factor to the age variable in our data; this scaling factor is
the same for all households in a given year. For all years prior to 1984 in which the CE summary
tables are not available, we use the benchmark series of the UN World Population Prospects to
impute average household age.

Linking consumption and price datasets To link the CPI price series to household expendi-
tures from the CEX, we manually build a crosswalk, starting from the UCC to CPI concordance
provided by BLSA28 and extending coverage back in time. All expenditure categories are mapped
to at least one inflation series from the CPI price data.A29 Our main dataset is thus at the UCC
level and includes 598 unique product codes that map to 159 CPI inflation series.

Year-specific scaling factor to match BEA’s aggregate personal consumption expenditure
For all datasets, we ensure that we match BEA’s aggregate personal consumption expenditures.
We apply a year-specific scaling factor to the household consumption data so that we match the
BEA’s nominal personal consumption expenditure per household in each year. This step is useful
for our purposes since the bias from the nonhomotheticity correction depends on consumption
growth over time, and since household expenditure surveys are known to miss some expendi-
tures. Our approach allows us to compute inflation inequality in an empirical setting that is fully
in line with the average nominal consumption growth observed in the U.S. national accounts.
This scaling step follows the spirit of distributional national accounts of Piketty et al. (2018),
ensuring that our analysis is consistent with macroeconomic aggregates.

A27The average age of all adults in the household is calculated by averaging the age of all household members at or
above the age of 18.

A28The up-to-date UCC-ELI concordance can be found here: https://www.bls.gov/cpi/
additional-resources/ce-cpi-concordance.htm.

A29While most UCCs are mapped to a single CPI categories,when there are more than one relevant CPI series, we
take the simple average of all relevant series to obtain the price change for that UCC.
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C.2 Datasets for Sensitivity Analysis

We build four alternative datasets to assess the robustness of our findings to data construction
choices.

Sensitivity to aggregation level: robustness datasets #1, #2 and #3 To assess whether our
results are sensitive to aggregation choices, we build two alternative datasets which closely follow
our main dataset but use different levels of aggregation, grouping UCCs into broader categories.
First, we create a version of the datast using the 32 product categories from CE summary tables.
The crosswalk between UCCs and the 32 CE table product categories is provided in the hier-
archical grouping auxiliary files. Second, we manually group the 598 UCCs into 119 mutually
exclusive product categories that are continuously available from 1984 to 2019.A30

In addition, we use Nielsen scanner data for consumer packaged goods to implement Algo-
rithm 1 on highly disaggregated data. The main product categories covered in the Nielsen data are
food and drinks at home, housekeeping supplies, household cleaning products account, as well as
personal care products, smoking products, tableware, tools, nonelectric cookware, and apparel.
These product categories account for 13.39% of overall household spending, which corresponds
to close to 40% of expenditures on goods. We conduct the analysis at the level of “product mod-
ules by price decile” cells, as in Jaravel (2019).

Sensitivity to official aggregate expenditure weights in CPI: robustness datasets #4 The
fourth alternative dataset for robustness is based on the official consumption weights used by
the Bureau of Labor Statistics when calculating the CPI.A31 We use the official consumption
weights for eight product categories that are available every year back to 1955. The eight broad
product categories included in this dataset are: food and beverages, housing, apparel, transporta-
tion, medical care, recreation, education and communication, other goods and services. Due to
the evolution of product categories and product hierarchy over the years, some sub-categories
are reassigned by BLS from one broad category to another over time. For example, BLS places
“Telephone services” under housing until 1997, then under “Education and communication.” To
address this issue, we adjust the placement of certain sub-categories and their allocated weights
so that the composition of broad categories remains consistent from 1955 to 2019.

In addition to the aggregate consumption weights, our linked dataset uses expenditure shares

A30These two robustness datasets allow us to compute additional price indices which require observing the same
set of product categories between consecutive periods, e.g. a Tornqvist price index. In contrast, there is substantial
churn for UCC items across years.

A31The official consumption weights are available at https://www.bls.gov/cpi/tables/
relative-importance/home.htm. They can differ from the expenditure patterns reported in the CE sum-
mary tables.
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by income quintiles from the CE summary tables published by the BLS, which are available from
1984 onwards, as in the main dataset. Prior to 1984, we assume the expenditure shares to remain
identical to 1984. We use the expenditure shares of each income quintile to distribute aggregate
consumption across income groups, so that we obtain a linked dataset with consumption patterns
that vary across income groups while keeping aggregate, category-level consumption weights
identical to the official weights of the BLS for their eight product categories that can be tracked
back to 1955.

D Additional Figures
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Figure D.1: Additional Evidence on Inflation Inequality over Time

(i) Inflation inequality, 1984-2019 (ii) Weaker Inflation inequality, 1984-1995
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The specification includes year fixed effects. The sample run from 1984 to 2019.
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(iii) Stronger inflation inequality, 1995-2019 (iv) Inflation inequality, 1955-1983
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The specification includes year fixed effects. The sample run from 1995 to 2019.
Each bin represents 1% of households.
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(v) Annualized Geom. Index, 1984-2019 (vi) Annualized Geom. Index, 1955-2019
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Note: This figure reports descriptive patterns on inflation inequality. In panels (i) through (iv), households are grouped by pre-tax income
percentile in each year. These panels report binned scatter plots depicting the relationship between the annual inflation rate and log nominal
consumption, absorbing time fixed effects. Each dot represents 1% of the data and all panels use the geometric price index. Panels (v) and (vi)
report the annualized inflation rate, for the period 1984-2019 and 1955-2019 respectively, using the chained geometric index.
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Figure D.2: Nonhomotheticity Correction and the Consumption Deflator

(i) 2019 price level with 1984 base prices (ii) 1984 price level with 2019 base prices
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Note: This figure reports the chained index formula, Πtπ
n
t , compared with the corrected non-homothetic deflator, yn

t /c n
t .

Figure D.3: Biases in 1984-2019 Cumulative Real Consumption Growth by Income Percentile

(i) with 1984 base prices (ii) with 2019 base prices
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Note: This figure compares the magnitude of biases in the measurement of cumulative consumption growth from 1984 to 2019, reporting the
deviation from the aggregate homothetic price index due to (a) percentile-specific homothetic price indices, and (b) due to the nonhomotheticity
correction. Panel (i) uses 1984 prices as base for the nonhomotheticity correction, while panel (ii) uses 2019 prices. The bias from percentile-
specific indices is identical in both panels.

Figure D.4: Cumulative and Annualized Growth Rates across Price Indices

(i) Cumulative growth, 1955-2019 (ii) Annualized growth, 1955-2019
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Note: This figure reports cumulative and annualized growth rates from 1955 to 2019 for three price indices, paasche, fisher and laspeyres.
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Figure D.5: Sensitivity Analysis for the Annual Bias in Real Consumption Growth

Panel A: Alternative price indices and second-order algorithm
(i) with 1984 prices as base (ii) with 2019 prices as base
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Panel B: Robustness to controls
(i) Education, age, race (ii) Extended controls
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Note: This figure report the biases in annual average real consumption growth per household due to the nonhomotheticity correction under
different specifications. Panel A reports the results under alternative price indices, geometric or fisher, with the first-order algorithm, as well as
with the second order algorithm. Panel A(i) uses 1984 prices as base, while Panel A(ii) uses 2019 prices. Panel B reports the results with controls,
using the geometric index and the first order algorithm. Panel B(i) controls for education, age, and race in the estimation of the income elasticity
of inflation. Panel B(ii) controls region, urban vs. rural area, gender, and city population size, in addition to education, age, and race.

Figure D.6: Sensitivity Analysis for the Degree of the Polynomial used in Algorithm 1
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Note: This figure report the biases in the level of average real consumption per household depending on the degree of the polynomial used in
Algorithm 1. We report the results for first-order (K = 1) and third-order (K = 3) polynomials. The figure is otherwise identical to panel (a) of
Figure 3 in the main text, which uses a second-order polynomial.
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Figure D.7: Results with Real Consumption Function (RCF) Algorithms

Panel A: First-order RCF Algorithm
(i) Bias in the Level of Real Cons. (ii) Annual Bias in Real Cons. Growth
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Panel B: Second-order RCF Algorithm
(i) Bias in the Level of Real Cons. (ii) Annual Bias in Real Cons. Growth
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Note: This figure is identical to Figure 3 in the main text, except that we use the alternative algorithms described in Appendix A.3.2, which are
based on estimation of the real consumption function (RCF). Panel A uses the first-order AlgorithmA.2, while Panel B uses the second-order
Algorithm A.3. This figure report the biases in the level of average real consumption per household, in panels (A.i) and (B.i), and in annual
growth in real consumption per household, in panel (A.ii) and (B.ii)

Figure D.8: Results with State Fixed Effects

(i) Bias in the Level of Real Cons. (ii) Annual Bias in Real Cons. Growth
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Note: This figure report the biases when using state fixed effects in the estimation of the income elasticity of inflation. Specifically, we control for
state fixed effects, education, age, race, urban vs. rural area, gender, and city population size. The figure is thus identical to Panel B(ii) of Figure
6 in the main text, except that we control for state instead of region.

A52



Figure D.9: Nonhomotheticity Correction and Bias in Average Real Consumption with JL and
BBK Algorithms, 1984-2019

-1
.5

-1
-.5

0
Bi

as
 in

 A
ve

ra
ge

 R
ea

l C
on

su
m

pt
io

n

1984 1989 1994 1999 2004 2009 2014 2019
Year

JL BBK

Note: This figure report the nonhomotheticity biases in the level of average real consumption per household. For each year, the bias is expressed
in percentage of current average consumption. The bias is computed by applying our baseline first-order algorithm (JL) and the algorithm of
Baqaee et al. (2022) (BBK) to obtain the nonhomotheticity correction. We then compare standard measures of average real consumption to
corrected measures. The algorithms are applied to our main dataset at the level of pre-tax income percentiles, in the range for which the BBK
algorithm can produce estimates (with no extrapolation step). We then average percentile-level results to obtain average real consumption per
household. We use 1984 as the base period for our money metric.

Figure D.10: Results with 32 Product Categories, 1984-2019

(a) Bias in the Level of Real Cons. (b) Annual Bias in Real Cons. Growth
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Note: This figure is identical to Figure 3 in the main text, except that we use our robustness dataset #1, i.e. we work with data at the level of
32 product categories from the CE summary tables. This figure report the biases in the level of average real consumption per household, in
panel (a), and in annual growth in real consumption per household, in panel (b). The bias is computed by applying Algorithm 1 to obtain the
nonhomotheticity correction. We then compare standard measures of real consumption to corrected measures. In panel (b), the bias is expressed
as a percentage of the standard homothetic measure of current-period growth. Algorithm 1 is applied to our robustness dataset #1 at the level
of pre-tax income percentiles, using geometric price indices. We then average percentile-level results to obtain average real consumption per
household.
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Figure D.11: Results with 114 Product Categories, 1984-2019

(a) Bias in the Level of Real Cons. (b) Annual Bias in Real Cons. Growth
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Note: This figure is identical to Figure 3 in the main text, except that we use our robustness dataset #2, i.e., we work with data at the level of 114
product categories that are continuously available between 1984 and 2019. This figure report the biases in the level of average real consumption
per household, in panel (a), and in annual growth in real consumption per household, in panel (b). The bias is computed by applying Algorithm 1
to obtain the nonhomotheticity correction. We then compare standard measures of real consumption to corrected measures. In panel (b), the bias
is expressed as a percentage of the standard homothetic measure of current-period growth. Algorithm 1 is applied to our robustness dataset #2 at
the level of pre-tax income percentiles, using geometric price indices. We then average percentile-level results to obtain average real consumption
per household.

Figure D.12: Results for Fast-Moving Consumer Goods with 9131 Product Categories, 2004-2014

(a) Bias in the Level of Real Cons. (b) Annual Bias in Real Cons. Growth

-.1
5

-.1
-.0

5
0

.0
5

.1
Bi

as
 in

 A
ve

ra
ge

 R
ea

l C
on

su
m

pt
io

n

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
Year

2004 base prices  2014 base prices

-4
-3

-2
-1

0
1

2
3

4
An

nu
al

 B
ia

s 
in

 R
ea

l C
on

su
m

pt
io

n 
G

ro
w

th
, %

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
Year

2004 base prices  2014 base prices

Note: This figure is identical to Figure 3 in the main text, except that we use our robustness dataset #4, i.e., we work with data at the level of 9131
product categories that are available in the Nielsen Homescan Consumer Panel Data between 2004 and 2014. This figure report the biases in the
level of average real consumption per household, in panel (a), and in annual growth in real consumption per household, in panel (b). The bias
is computed by applying Algorithm 1 to obtain the nonhomotheticity correction. We then compare standard measures of real consumption to
corrected measures. In panel (b), the bias is expressed as a percentage of the standard homothetic measure of current-period growth. Algorithm
1 is applied to our robustness dataset #4 at the level of pre-tax income deciles, using geometric price indices. We then average decile-level results
to obtain average real consumption per household.
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Figure D.13: Results for CPI-CEX data Restricted to Fast-Moving Consumer Goods, 2004-2014

(a) Bias in the Level of Real Cons. (b) Annual Bias in Real Cons. Growth
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Note: This figure is identical to Figure 3 in the main text, except that we restrict the sample to product categories belonging to fast-moving
consumer goods and focus on the period from 2004 to 2014. These sample restrictions allow for a comparison of the results obtained with
the CPI-CEX dataset and the Nielsen dataset analyzed in Figure D.12. The restricted sample covers 44 UCC items belonging to the following
categories: alcoholic beverage; food at home; personal care products; pets, toys, hobbies, and playground equipment; sewing machines, fabric and
supplies; tools, hardware, outdoor equipment and supplies. The figure report the biases in the level of average real consumption per household,
in panel (a), and in annual growth in real consumption per household, in panel (b). The bias is computed by applying Algorithm 1 to obtain the
nonhomotheticity correction. We then compare standard measures of real consumption to corrected measures. In panel (b), the bias is expressed
as a percentage of the standard homothetic measure of current-period growth. Algorithm 1 is applied at the level of pre-tax income deciles, using
geometric price indices. We then average decile-level results to obtain average real consumption per household.

Figure D.14: Results for Fast-Moving Consumer Goods with 9131 Product Categories account-
ing for Increasing Product Variety, 2004-2014

(a) Bias in the Level of Real Cons. (b) Annual Bias in Real Cons. Growth
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Note: This figure is identical to Appendix Figure 3, except that for each the 9131 product categories available in the Nielsen data we build a CES
price index accounting for changes in product variety over time, using the methodology of Feenstra (1994), which was applied to scanner data in
Broda and Weinstein (2010) and Jaravel (2019). The figure report the biases in the level of average real consumption per household, in panel (a),
and in annual growth in real consumption per household, in panel (b), using Algorithm 1. As previously, we average decile-level results to obtain
average real consumption per household.
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Figure D.15: Results with Official CPI Aggregate Expenditure Weights, 1955-2019

(a) Bias in the Level of Real Cons. (b) Annual Bias in Real Cons. Growth
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Note: This figure is identical to Figure 3 in the main text, except that we use our robustness dataset #3, i.e., we work with use official CPI
aggregate expenditure weights for eight broad expenditure categories to rescale the household-level expenditure patterns, thus ensuring that our
data is consistent with aggregate expenditures used by the BLS when computing the CPI. This figure report the biases in the level of average
real consumption per household, in panel (a), and in annual growth in real consumption per household, in panel (b). The bias is computed
by applying Algorithm 1 to obtain the nonhomotheticity correction. We then compare standard measures of real consumption to corrected
measures. In panel (b), the bias is expressed as a percentage of the standard homothetic measure of current-period growth. Algorithm 1 is applied
to our robustness dataset #3 at the level of pre-tax income percentiles, using geometric price indices. We then average percentile-level results to
obtain average real consumption per household.
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Figure D.16: Inflation across Age Groups and over Time

(i) 1955 to 2019
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The specification includes year fixed effects. The sample run from 1955 to 2019.
Each bin represents 1% of households.

(ii) 1955 to 1983 (iii) 1984 to 2019

.0
44

.0
46

.0
48

.0
5

.0
52

.0
54

Lo
g 

G
eo

m
et

ric
 in

de
x 

(a
nn

ua
l)

0 20 40 60 80
Average age of household members

The specification includes year fixed effects. The sample run from 1955 to 1983.
Each bin represents 1% of households.
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The specification includes year fixed effects. The sample run from 1984 to 2019.
Each bin represents 1% of households.

Note: This figure reports binned scatter plots depicting the relationship between the geometric index and the average age of household members.
Each panel focuses on a different period. In each panel, each bin represents 1% of households. In each year, the unit of osbervation is “age decile
by income decile” cells. All specifications include year fixed effects.

Figure D.17: Average household age over time in the United States
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Note: This figure reports the change in average household age over time.
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