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Abstract
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1 Introduction

How should tax policy respond when prices change? While price variation is pervasive, the optimal tax-

ation literature has largely treated prices as fixed. Indeed, the seminal result of Diamond and Mirrlees

(1971b) states that optimal tax formulas can be derived as if prices were fixed at their equilibrium level,

and leaves implicit the optimal response of taxes to price changes.1 Yet, empirically price changes are

ubiquitous – and importantly, they tend to correlate with household income. Recent work shows that

heterogeneous inflation rates across products consumed by low- and high-income households played an

important role for purchasing power inequality in the United States (e.g., McGranahan and Paulson

(2005), Kaplan and Schulhofer-Wohl (2017), Jaravel (2019), Argente and Lee (2020), Klick and Stock-

burger (2021), Jaravel and Lashkari (2023), Jaravel (2024)). Despite the prevalence of price changes, to

date we lack the tools to characterize their potential effects on optimal taxation.

In this paper, we develop a theoretical framework to analyze the effect of prices on optimal tax design,

and we quantitatively estimate their impact. We provide an explicit characterization of the impact of

prices on the marginal social value of transfers, on labor supply, and on labor supply elasticities. Further-

more, we show that when the response of the tax schedule to price changes is non-trivial, a feedback loop

may emerge: taxes shift demand for goods, which can induce a further change in prices through general

equilibrium adjustments (e.g., returns to scale), and a new response of the tax schedule. Equilibrium

prices are still a sufficient statistic in our optimal tax formulas, but finding the new equilibrium prices (in

response to exogenous shocks) requires characterizing this feedback loop and, in particular, the response

of the supply side of the economy.

To facilitate comparison with the prior literature, we work with a standard, static Mirrlees model:

agents have preferences over multiple consumption goods and leisure, and labor is the only factor of

production; preferences are weakly separable between consumption and labor, as in the Atkinson-Stiglitz

benchmark. This setting allows us to capture non-homothetic spending patterns across the income dis-

tribution while focusing on a single tax instrument for redistribution, the nonlinear income tax.

The main challenge is that the channels through which prices shape redistribution are not explicit,

as they appear only implicitly in the first-order conditions determining the optimal marginal tax rates.2

Using a comparative static approach, we characterize the first-order responses of taxes to price changes

in terms of observable statistics.

To isolate the role of non-homotheticities, we start by analyzing the case of linear production functions:

prices are fully exogenous and do not respond to shifts in aggregate demand for goods. We identify two key

channels through which prices affect the income tax schedule. We show that the impact of prices on taxes

is governed by the marginal propensity to spend on the products experiencing a price change. To illustrate,

consider an increase in the price of a product for which the marginal propensity to spend decreases with

income, which we refer to as a “necessity product”. First, a price increase on a necessity good raises the

marginal price index of lower-income households relatively more than that of higher-income households,

i.e. lower income households can now buy less with an additional dollar of income. Therefore, the social

value of a dollar transfer from higher-income to lower-income households decreases (Channel #1). Second,

1Standard optimal tax formulas are first-order conditions featuring endogenous variables that depend on prices, such as
the marginal utility of disposable income.

2Another difficulty in our case is that non-homothetic demand systems do not yield closed form solutions in general.
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as the decrease in marginal purchasing power is larger at lower income levels, the price increase generates

a positive income effect,3 which is higher as income increases: a dollar transfer disincentivizes labor

supply relatively more at higher income levels, and thus a price increase on a necessity good increases the

efficiency cost of taxation (Channel #2). Since both the cost of taxation and the social value of transfers

to higher-income increases, the marginal tax rates decreases everywhere, and redistribution to the rich

increases.

Perhaps surprisingly, we thus find that, far from compensating price movements, the optimal tax

system amplifies their redistributive effects: an increase in the price of necessity goods induces more

redistribution at the top of the income distribution; the opposite is true when luxuries become more

expensive. These channels do not operate when preferences are homothetic as all agents are equally

impacted by price changes.4 While we highlight these channels under linear production functions, they

do not depend on any particular supply-side model.

Next, we consider non-linear production functions: prices become endogenous and also adjust through

general equilibrium effects. With non-linear production functions, the elasticity of prices with respect to

aggregate consumer demand across products becomes pivotal to evaluate the interplay between optimal

taxes and prices. Using a sufficient statistics specification, we capture both the canonical Diamond-

Mirrlees setting – with perfect competition and potentially decreasing returns to scale – and a wide class

of free entry models allowing for increasing returns to scale through firm selection (Melitz (2003)), vari-

able markups (Feenstra and Weinstein (2017)), and innovation (Bustos (2011)). We show theoretically

that, when product prices decrease as their market expands,5 the redistributive effects of price changes

and their amplification through taxes are strengthened in general equilibrium. This amplification oc-

curs through both substitution and income effects. For instance, when the relative price of necessities

increases, consumers substitute away from them, which leads to further increases in their relative price

through increasing returns. Moreover, the increase in the relative price of necessities leads to a fall in

the real income of lower-income households, who consume relatively more necessities, implying a further

decline in their relative demand and a further increase in their relative price. These amplification channels

operate in any supply side model with elastic prices, although this effect remains implicit in the standard

Diamond-Mirrlees tax formulas.6

Building on these theoretical insights, in the quantitative section of the paper we evaluate the optimal

response of taxes to the price changes observed in the data in recent years, and we examine more generally

how our benchmark specification – with non homothetic preferences and downward sloping supply curves

– affects optimal redistribution policies. We first implement our comparative static approach. While it

only gives the first order response of taxes to price changes, it has two advantages: we can directly use re-

3Denoting η̃ the income effect on labor supply, we have for an increase in the price of necessity pl, ∂pl η̃ > 0 which decreases
the efficiency cost of taxation.

4In the main text, we consider a benchmark case where there are no income effects on labor supply (at initial prices). In
Online Appendix E, we extend these results to more general labor supply functions. Our results are qualitatively similar in
these more general cases.

5Prior work shows that product markets with larger demand tend to have higher productivity and lower prices due to
several channels. For instance, higher demand increases the incentives to enter a market, to innovate, and to compete, which
leads to lower marginal cost, lower markups, larger product variety, and lower consumer price indices. These channels have
been analyzed in a recent empirical literature (e.g., Costinot et al. (2019), Jaravel (2019), Faber and Fally (2021)) as well as
in a long-standing theoretical literature (e.g., Romer (1990a), Aghion and Howitt (1992a), Melitz (2003)).

6When prices increase as the market expands (in contrast with our baseline case featuring increasing returns, in line with
empirical evidence), the redistributive effects of prices are muted through general equilibrium effects.
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cent causal estimates of the elasticity of prices to market size to evaluate supply side responses to shifts in

demand, and we can non-parametrically fit non-homothetic spending patterns. By linking the Consumer

Expenditure Survey (CEX) and the Consumer Price Index (CPI) data sets, we obtain observed price

changes and households’ spending across 248 product categories for the period 2004 to 2015, covering the

entire consumption basket of American households. Empirically, inflation was lower in product categories

with higher income elasticities. We find that, in response, it is optimal to reduce redistribution and set

lower marginal tax rates, with a fall in marginal tax rates of about 8 percentage points at the bottom of

the income distribution (relative to the observed tax schedule).7

Next, we make parametric assumptions on non-homotheticities, using non-homothetic CES (nhCES)

preferences as in Hanoch (1975), Matsuyama (2019), and Comin et al. (2021). We then study the quan-

titative importance of increasing returns to scale, non-homotheticities and price shocks for optimal tax

rates and welfare across the skill distribution. By introducing parametric assumptions on preferences,

these analyses are complementary with the analysis of first-order approximations, because they charac-

terize how our new channels affect the optimum when accounting for potential non-linearities. They also

allow us to characterize the quantitative importance of non-homotheticities for the optimal tax schedule.

Relative to the optimal tax schedule with homothetic preferences, we find that non-homotheticities

imply more redistribution. Relative to the optimum under homothetic preferences, marginal taxes in-

crease over the full range of the income distribution. The increase is more pronounced at the bottom of

the income distribution, with an increase in marginal tax rates of about 6pp for levels of earned income

below $20,000. The increase is about 2pp at an income level of $100,000, and then gradually decreases,

reaching levels close to zero above $300,000. Thus, the simulations show that non-homotheticities have a

significant quantitative impact on optimal marginal tax rates. To document whether these tax changes

and their induced price effects have meaningful distributional effects, we compute the willingness to pay

of agents for the optimal tax schedule under non-homothetic preferences, relative to the optimal schedule

under homothetic preferences. The equivalent variation is sizable, ranging from about 15% in the bottom

decile of the income distribution to -9% in the top decile.

We show that this increase in redistribution can be explained by the change in equilibrium prices

and in the marginal utility of redistribution across the skill distribution. As the relative price of the

necessity bundle decreases, it is optimal to redistribute more to those with a higher marginal propensity to

consume on necessities, which induces further tax changes and changes in labor supply, etc. The strength

of these feedback loops depends on the parameters governing increasing returns and social preferences for

redistribution, and we find them to be large in our calibration. We also document the robustness of our

results to alternative parameter values.

Related literature. The main contribution of this paper is to provide a theoretical and quantitative

characterization of the impact of prices on optimal tax design. We thus relate to several strands of lit-

erature. First, in prior work the effect of prices on the tax schedule has remained implicit, as standard

7Since empirical studies stress the importance of using granular data to properly measure inflation heterogeneity, we
also estimate the impact of price changes in the subset of goods covered by the NielsenIQ scanner data. We find that the
sensitivity of the tax rate to change in the prices is larger when we consider granular products rather than goods aggregated
at a level comparable to the CEX. Our baseline results using the CEX-CPI data are therefore likely to underestimate the
impact of price changes on optimal redistribution.
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tax formulas depend on endogenous variables that depend on prices, such as the marginal utility of dis-

posable income. Several papers have highlighted the implications of specific assumptions on consumers’

preferences for tax design, including preference heterogeneity (e.g., Saez (2002), Diamond and Spinnewijn

(2011)) and consumers’ myopia (e.g., Allcott et al. (2019)). Instead, we show theoretically and quan-

titatively that prices play an important role even in the canonical setting where the utility function is

separable between labor and all commodities, i.e. no indirect taxes need to be used, as in Atkinson and

Stiglitz (1976).8 We explicitly characterize the impact of prices on the tax schedule, both in partial equi-

librium and general equilibrium, providing decompositions isolating the economic forces at play. Second,

our results contribute to a growing strand of the optimal taxation literature that has isolated the general

equilibrium effects of taxes, focusing on wages (e.g., Rothschild and Scheuer (2013), Sachs et al. (2020));

we complement these analyses by characterizing the general equilibrium impact on prices in the presence

of non-homotheticities. Third, although imperfect competition is not our focus, our work relates to a

growing literature on optimal taxation in the presence of imperfect competition, in which endogenous

prices or wages play a role for redistribution from firm owners toward workers (e.g., Boar and Midrigan

(2019), Eeckhout et al. (2021), Kushnir and Zubrickas (2020)).9 Instead, we demonstrate the importance

of non-homotheticities and show that prices play an important role even in the canonical setting with no

profit or full profit taxation, as in Diamond and Mirrlees (1971b). We thus isolate a novel mechanism,

the amplification of redistribution due to the interaction between price changes and non-homotheticities.

Furthermore, by studying price changes stemming from increasing returns to scale, this paper con-

tributes to a growing literature on optimal tax design and endogenous productivity. Recent work high-

lights the role that taxes may have on entrepreneurial effort (e.g, Jaimovich and Rebelo (2017), Bell

et al. (2018)) and draws implications for optimal taxation of top earners (e.g, Jones (2019), Bell et al.

(2019)). In contrast, we study productivity effects that are induced by changes in demand, through re-

turns to scale, and which inherently interact with the income tax schedule. We find that the impact of

taxes on productivity through demand and returns to scale is quantitatively large, implying substantial

adjustments to the optimal tax schedule.

8Naito (1999) considers a model with two types of labor inputs (i.e., workers are not fully substitutable in the firm
production functions) and shows that if the two types of labor cannot be taxed at different rates (a deviation from the
Diamond and Mirrlees (1971b) benchmark), then subsidizing the good of the sector that uses relatively more low-type workers
can be optimal, as it increases their wages. While Naito (1999)’s channel requires segmented labor markets and multiple
factors or production but can operate with homothetic utility, our analysis can have a single factor of production (with
differences in efficiency units across agents) and requires non-homothetic utility. In this sense, our analysis is conceptually
distinct from the contribution of Naito (1999).

9These papers highlight the importance of rents that accrue to firm owners, which can be redistributed through taxation
of income, endogenous price changes, and commodity taxes. We instead characterize different channels, which continue to
apply in settings with no rents, i.e. with full profit taxation or zero profit. In particular, Kushnir and Zubrickas (2020) study
optimal taxation with endogenous prices, decreasing returns to scale, positive firm profits, and homothetic utility. While
their Appendix A.3 examines the case of non-homothetic preferences, the impacts of non-homotheticities and prices remain
implicit in their tax formulas through endogenous variables that depend on prices, such as the marginal utility of disposable
income. Our analysis thus complements the work of Kushnir and Zubrickas (2020) as our results do not depend on the
taxation of profits and provide a full characterization of the role of non-homotheticities. The intuition for their main result is
that, when profits are not fully taxed, the social planner uses the price level as an additional redistributing tool: a decrease
in the price level benefits low-productivity agents as they can afford more consumption, but hurts high-productivity agents
through a decrease in firm profits. We characterize a different channel: our price effects operate through non-homotheticities
and changes in the marginal utility of income at different income levels. As entry is free, firms make no profit on average
in our model. We do not need to keep track of the distribution of profits across households as we assume that households
hold a fully diversified portfolio of firms, with zero profits on average. We can thus cleanly separate our analysis from
complementary prior work focusing on the distribution of firm profits.
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Outline. The remainder of the paper is organized as follows. Section 2 presents the model. Section 3

derives the optimal income and commodity taxation formula in terms of sufficient statistics. Section 4

uses the comparative static approach to characterize the sensitivity of optimal tax rates to price shocks.

The quantitative analysis is carried out in Section 5. Supplemental results and proofs are reported in the

Online Appendix.10

2 Model

To streamline our analysis, we present in the main text the simplest possible model allowing us to illustrate

the mechanisms described in the introduction.The general model is relegated to Appendix E.

We consider a two-sector economy. Sectors are indexed by k = l, h. There is a mass 1 of households

with different productivity types θ distributed according to π(θ). To facilitate reading, Online Appendix

Table A1 provides a list of the variables and notation we use.

Households. Households’ preferences over goods ch, cl and hours worked z/θ, where z denotes pre-tax

income, are given by:

u(cl, ch)−
1

1 + 1
ε

(z
θ

)1+ 1
ε
,

with u concave, increasing and C3, and ε ≤ 1. Preferences are of the Atkinson-Stiglitz type so that

consumption choices only depend on consumer prices and post tax income z∗. This specification allows us

to capture non-homothetic spending patterns across the income distribution, and thus the unequal effects

of price changes, while focusing on a single tax instrument for redistribution, the nonlinear income tax.11

We denote by V the indirect utility of the agent, by v the indirect sub-utility out consumption (i.e.,

the maximum of u(cl, ch) at fixed post tax income z∗), and by vz∗ the marginal utility of income. V

depends on the agent type θ, on consumer prices and on the tax schedule. Aggregate demand for k across

all households is denoted by Ck.

Firms. We adopt a supply-side formulation that nests both perfect competition and monopolistic com-

petition with free entry. The competitive case, following the canonical Diamond-Mirrlees framework,

remains central in public finance. In that case, prices are pinned down by technology and demand.

However, incorporating monopolistic competition is crucial for capturing how prices respond to demand

shifts. Empirical evidence (e.g., Costinot et al. (2019), Jaravel (2019), Faber and Fally (2021)) shows that

prices tend to fall as market size grows—a result driven by increased entry and declining markups. Our

10Appendix A presents the proofs of all theoretical results in the main text; Appendix B describes additional quantitative
results; additional figures and tables are reported in Appendix D; finally, Appendix E presents additional theoretical results.

11With more general preferences, it would be possible to use the consumer prices of certain goods to better discriminate
between different taxpayers (e.g., Saez (2002), Ferey et al. (2023)). However, we focus on characterizing how unequal
price changes for consumption baskets along the income distribution affect the desirability of redistribution policies. In the
interest of providing a streamlined analysis, it is sufficient to generate heterogeneous baskets of consumption through non-
homothetic Atkinson-Stiglitz preferences rather than idiosyncratic preferences. Indeed, the heterogeneous welfare impacts
of price changes only depend on the heterogeneity in households’ expenditure shares, whether they stem from idiosyncratic
preferences or households’ income levels.
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framework is meant to accommodate both forces: technological determination of prices and endogenous

markups that respond to demand.12

In each sector, good k is produced either competitively or monopolistically using labor as the sole

input. Under these assumptions, we can summarize the production process through a cost function

χk (Ck, ξk) (capturing the total labor cost needed to produce Ck units of good k), and a pricing function

pk = ϕk (Ck, ξk) where ξ is a cost shifter. When the good is produced competitively, the pricing function

is simply the marginal cost of production: ϕk (Ck, ξk) = ∂Ck
χk (Ck, ξk). When the good is produced

monopolistically, we further assume that firms can freely enter market k, by paying a fixed labor cost, in

which case total cost is equal to total revenue: χk (Ck, ξk) = Ckϕk (Ck, ξk). In Appendix E.1, we provide

microfoundations for this specification of the supply side.

An important statistic for our analysis is the elasticity of the price pk to market size, −Ck/pk ∂Ck
ϕk.

In the main text, we impose that this elasticity is constant and equal to α in all sectors. This elasticity

will be crucial: tax changes shift households’ incomes and thus aggregate demand for goods, which affects

prices.

To illustrate our supply side model, we provide some simple parametric microfoundations as examples.

First, consider a competitive case with a representative firm in sector k producing its good at cost

χk (Ck, ξk) = ξkC
1−α
k /(1− α). The pricing function is then ϕk (Ck, ξk) = ξkC

−α
k and the elasticity of the

price pk to market size is α. In particular, α = 0 corresponds to the standard case where production

functions are linear and prices are exogenous, given by ξk.

For the monopolistic case, consider the Melitz-Chaney model (Melitz (2003), Chaney (2008)). Pro-

ducers of differentiated varieties of product k can freely enter market k by paying a fixed labor cost ξe,k.

Upon entering, they draw their productivity type γ (i) from a Pareto distribution 1 − Ψk (γ) = γ−γk .

To start production, firms have to pay a second fixed cost, ξp,k. The variable labor cost of produc-

ing ck,i units of variety i is ck,i/γ (i). Competitive retailers then aggregate the varieties according to

Ck =
(∫

i∈Ik c
1−α
k,i di

) 1
1−α

, with 0 < α < 1, where Ik is the set of producing firms. We then obtain the

price of good k is pk = C−α
k φk(ξk)

13 and the elasticity of the price pk to market size is α.

12A longstanding literature emphasizes that larger markets stimulate entry, which can increase product variety and lower
prices, through both reduced marginal costs and decreased markups. The notion that market size endogenously drives
productivity improvements originates with Linder (1961) and Schmookler (1966), and was subsequently formalized in foun-
dational models by Dixit and Stiglitz (1977), Krugman (1979), Shleifer (1986), Romer (1990a), Aghion and Howitt (1992a),
Acemoglu (2002), and Melitz (2003). Empirically, several studies confirm that both entry and total factor productivity (TFP)
respond to changes in market size. Acemoglu and Linn (2004) show that pharmaceutical innovation and the entry of new
drugs in the U.S. are shaped by market size. Weiss and Boppart (2013), using national accounts data, find that TFP growth
is higher in income-elastic sectors. In Chinese manufacturing, Beerli et al. (2020) estimate that a 1% increase in market
size raises TFP by 0.46%. In the context of local housing markets, Diamond (2016) and Couture et al. (2020) document
that amenities adjust endogenously to shifts in local demand. A smaller but growing literature studies the impact of market
size on prices. Bartelme et al. (2019), exploiting trade shocks, estimate scale elasticities across two-digit U.S. manufacturing
sectors, averaging 0.13 with a range from 0.07 to 0.25. Jaravel (2019), using a shift-share IV design in consumer packaged
goods, finds that a 1% increase in demand reduces prices by 0.42%. Structural estimates suggest that over half of this effect
reflects falling markups rather than declining marginal costs. Similarly, Faber and Fally (2021), using Nielsen scanner data,
estimate a structural model showing that quality production exhibits increasing returns to scale. Together, these findings
underscore the importance of accounting for increasing returns when analyzing optimal taxation, particularly from a long-run
perspective that incorporates entry dynamics. In contrast, benchmark optimal tax models—such as Mirrlees (1971) and Saez
(2001)—typically assume constant returns to scale, which may be more relevant in short-run settings.

13With φk(ξk) =
1
α
ξp,k

(
α(1+γk)−1

1−α

ξe,k
ξp,k

)− 1
γk

α (
α

1−α
1

ξp,k

) 1
1−α

.
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Planner’s problem. The social planner has access to a full set of commodity taxes and to a non-

linear income tax and a full tax on profits (in the monopolistic case, profits are 0). As our agents have

Atkinson-Stiglitz preferences, the role of commodity taxation is limited but we include commodity taxes

for completeness.

The planner maximizes the following social welfare function,∫ θ̄

θ
G(V (θ), θ)π(θ)dθ,

with G concave and increasing in its first argument. The planner sets consumer prices {qh, ql} and the

income tax T (z) subject to three constraints. First, the producer prices ph, pl are given by the functions

ϕk, with pk = ϕk(Ck, ξk), where Ck denotes the aggregate demand for k. Second, households optimally

choose consumption and labor supply under qh, ql and T (z). We denote by f(z) the resulting distribution

of income, with dz/dθf(z) = π(θ), and by z∗ disposable income, with z∗ = z − T (z). Finally, the

government’s budget constraint is given by
∑

k=h,l(qk−pk)Ck+Ez(T (z))+
∑

k=h,l (pkCk − χk (Ck, ξk)) ≥ 0.

With this formulation of the planner problem, we encompass both the standard Diamond-Mirrlees

framework where firms are competitive and profits are fully taxed and the monopolistic case with free

entry where firms earn zero profits on average (χk (Ck, ξk) = Ckϕk (Ck, ξk)).

Missing Tax. Our benchmark specification does not have, in general, an efficient supply side. Therefore,

the solution of the government problem will be constrained efficient. With more tax instruments, the social

planner could regulate firms and improve the allocation. For example, the planner could directly choose

the number of firms in each market to minimize the total cost of production, which includes the variable

cost of production and the entry cost.

Note however that the planner can regulate supply in a revenue neutral fashion: for a given industrial

policy τ that depends on aggregate quantities, there is a new reduced-form pricing function pk = ϕτk(Ck, ξk)

which depends on the regulatory regime. The solution of the planner problem characterizes the optimal

choice of consumption and income taxes for a given industrial policy, which may or may not be optimal.14

In that sense, industrial policies and redistribution are separable: for a given regulatory rule of the supply

side, we take the induced pricing function (and the market size elasticity) as given and derive the optimal

redistributive policy.15 Our results will therefore be valid whether or not industrial policies are optimal,

or missing altogether.

Notation. We use standard notation throughout the paper. ζ ≡ ε/
(
1− ε∂ln(z)ln (vz∗)

)
is the compen-

sated labor supply elasticity and ζ̃ is the compensated labor supply elasticity corrected for non-linearities

in the budget constraint: ζ̃ = ζ/(1 + zζT ′′/(1 − T ′)). Similarly, η = ζ∂ln(z)log (vz∗) is the income ef-

fect with a linear budget constraint and η̃ the corrected income effect.16 Regarding spending patterns,

ek = qkck(z
∗, q) denotes the agent’s expenditure on k, sk(z

∗, q) = ek/z
∗the share of k consumption, ∂z∗ek

14Suppose that under the industrial policy τ the pricing function is ϕτ
k(Ck, ξk), so the cost is Ckϕ

τ
k(Ck, ξk), and the fiscal cost

is Ckψ
τ
k(Ck, ξk) for an arbitrary function ψτ

k . By imposing a sales tax tk(Ck, ξk) = ψτ
k(Ck, ξk) the industrial policy is budget

neutral and the income taxation problem is equivalent with a new pricing function ϕ̃τ
k(Ck, ξk) = ϕτ

k(Ck, ξk) + tk(Ck, ξk).
15In the quantitative analysis, we use the estimated market size elasticity in the United States between 2004 and 2015,

which depends implicitly on the regulatory regime in that period.
16See for instance Appendix A1 of Scheuer and Werning (2016).
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the marginal propensity to spend on k, Ek and s̄k are the aggregate spending and the aggregate spending

share on k, and ∂z∗Ek the average marginal propensity to spend on k. Finally, S is the matrix of cross

price derivatives of the aggregate Hicksian demand function, with Sjk = E(∂qkcj + ∂z∗cjck), S the matrix

of price elasticities Sjk = qk/CjSjk, and σ = −Shh + Slh = −Sll + Shl the elasticity of substitution.

3 Optimal Taxation: First-Order Approach

In this section, we characterize the optimal commodity and income taxes. While we provide heuristic

derivations in this section, Online Appendix A reports the formal proofs.

Commodity Tax. Consider a small change in the consumer price of k, dqk, compensated with an

income tax change dT (z) = −ck(z∗, q)dqk. As explained in Saez (2002), this compensation keeps the

welfare and labor supply of all agents constant. Therefore, the impact on government revenue is:

dqkCk︸ ︷︷ ︸
Mechanical effect

+ E(dT (z))︸ ︷︷ ︸
Cost of the compensation

+
∑
j=h,l

(qj − ∂Cjχj (Cj , ξj))dCj︸ ︷︷ ︸
Households’ behavioral response

.

The increase in qk first mechanically raises revenues from the tax on k by dqkCk. Households are compen-

sated for the consumer price increase through the income tax, so revenue from the income tax decreases:

E(dT ) = −Ckdqk. The mechanical effect and the cost of the compensation exactly offset each other:

dqkCk + E(dT (z)) = 0. Since dqk is compensated, aggregate consumption reacts through a substitution

effect (dCk/Ck = Sk,j (dqj/qj)) and the impact on government revenue of the households’ change in con-

sumption is
∑

j=h,l(qj−∂Cjχj (Cj , ξj))dCj =
∑

j=h,l(qj−∂Cjχj (Cj , ξj))CjSj,k (dqk/qk). Given our supply

side specification, we have ∂Cjχj (Cj , ξj) = (1− tw) pj with tw = α in the monopolistic case () and tw = 0

in the competitive case.17 This change in marginal cost captures the response of the supply side to the

shift in demand, and the adjustment of producer prices. At the optimal consumption prices, revenue

should remain unchanged, so we obtain:

∑
j=h,l

(qj − (1− tw)pj)CjSj,k
dqk
qk

= 0.

Since this must hold for both dql and dqh, we have qk = βpk at the optimum, with β an arbitrary scaling

constant. Without loss of generality, we choose the scaling so that on average commodity taxes raise no

revenue, which implies that we get qk = pk.
18 We therefore obtain a version of the standard Atkinson-

Stiglitz result that commodity taxes are not used at the optimum. The derivation also makes clear that

when pricing inefficiencies, ϕk (Ck, ξk)− ∂Ck
χk (Ck, ξk), varies across sectors, then commodity tax should

17In the monopolistic case, we have ∂Ckχk (Ck, ξk) = ϕk (Ck, ξk) +Ck∂Ckϕk (Ck, ξk) = (1− α) pk, in the competitive case,
we have ∂Ckχk (Ck, ξk) = ϕk (Ck, ξk) = pk.

18Conceptually, the average commodity tax should be zero. If it was instead positive (or negative), consumer prices would
be on average higher than producer prices, which is an implicit income tax (or an implicit income subsidy). If the revenue
from the tax was positive (or negative), the government would have to rebate the tax revenue optimally (or raise funds
to finance the subsidy). Thus, there would be a non trivial interaction between redistribution and corrective commodity
taxation. Imposing zero revenue from commodity taxes on average cleanly separates the redistributive and corrective motives.
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be used to correct relative inefficiencies across sectors (i.e., heterogeneous αk’s).
19 This is not the case in

our benchmark specification where pricing inefficiencies are the same in both sectors.

Income Tax. Next, consider the perturbation of Saez (2001), a small change of marginal tax dτ in a

neighborhood dz of z and a change in tax dzdτ above. This has four effects: a mechanical change in

revenue, a welfare effect, a fiscal externality due to labor supply responses, and a fiscal externality due to

shifts in aggregate consumption and producer price adjustments.

Mechanical and Welfare Effects. Households above z pay an additional dzdτ in taxes. Their welfare

loss is vz∗dzdτ , valued G
′vz∗dzdτ/λ by the planner, where λ is the Lagrange multiplier on the government

budget constraint. The total effect on social welfare is:

Ez′>z

(
1−G′vz∗/λ

)
dzdτ.

Labor Supply Effects. The change in tax rate at z generates a compensated wage effect on labor supply,

while the change in the tax burden above z creates an income effect. The change in government revenue

is:

−f(z) T ′

1− T ′ zζ̃dzdτ − Ez′>z

(
T ′

1− T ′ η̃

)
dzdτ.

Price and Demand Effects. The change in the tax schedule affects households’ disposable income

both mechanically and through labor supply responses. This leads to a change in aggregate demand for

goods, through substitution and income effects, and in producer prices and costs. The total impact on

government revenue, through the receipts of the commodity and profit taxes, is given by:∑
k=h,l

(qk − ∂Ck
χk (Ck, ξk))dCk =

∑
k=h,l

(pk − (1− tw) pk) dCk

=tw
∑
k=h,l

pkdCk

=− tw

(
f(z)zζ̃ + Ez′>z (1 + η̃)

)
dzdτ.

In the derivation above, the first line uses ∂Ck
χk (Ck, ξk) = (1− tw) pkand qk = pk. The third line uses

the fact that, from the budget constraint of households,
∑

k=h,l pkdck is equal to the change in disposable

income. To interpret this effect, note that when tw > 0, prices are above marginal costs and demand for

goods is inefficiently low. An increase in the income tax decreases labor income and further depresses

demand, accentuating the initial inefficiency.

Summing up all of the effects derived above gives the first order conditions for the optimal tax rate.

We denote by g the Pareto weights g = G′vz∗/((1 − tw)λ), where the 1 − tw normalization is such that

E(g) = 1 when there are no income effects. Collecting our earlier result on optimal commodity taxes, we

then obtain our first Proposition:

19We show that commodity taxes are used to correct pricing inefficiencies in the proof of Proposition E1 in Appendix E,
which covers the general case.
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Proposition 1. Commodity taxes are not used at the optimum. The optimal non-linear income tax

schedule is characterized by:

T ′

1− T ′ = −tw +
1− tw

zζ̃f(z)

{
Ez′>z (1− g)− 1

1− tw
Ez′>z

((
tw +

T ′

1− T ′

)
η̃

)}
, (1)

where tw = α in the monopolistic case and tw = 0 in the competitive case. With α = 0, we obtain the

standard optimal tax formula in both cases.

Proof: See Appendix A.1. Proposition E1 in Appendix E provides a generalization of this result, with

general household preferences and in a multi-sector economy with heterogeneous returns to scale, with

potential spillovers across sectors.

Proposition 1 first shows that, as in the standard Atkinson-Stiglitz framework, commodity taxes are

not needed. This is not the case when α varies across sectors: commodity taxes then have a corrective

role but are not used for redistribution.

Turning to the optimal income tax schedule, Proposition 1 suggests that when the average market size

elasticity is positive and firms are not competitive (tw = α > 0), labor supply is subsidized and optimal

tax rates are reduced.20 Intuitively, there is an externality from working: more labor supply increases

aggregate income, i.e. market size, and leads to a fall in prices through returns to scale. If the endogenous

quantities (the Pareto weights, the income distribution, and the labor supply elasticities) remain constant

as α varies, then the formula tells us that the tax rate with α > 0 is such that 1 − T ′ = (1 − T ′)α=0/

(1−α). In that case, the planner implements a uniform wage subsidy 1/(1−α) on top of the standard non

linear tax, and it appears that there is no interaction between the corrective tax (the wage subsidy) and

redistributive motives. This interpretation is however naive, as prices and all endogenous quantities are

likely to vary as α changes: the interaction between corrective tax and redistributive motives is hidden

in the formula.

These observations highlight an important limitation of the standard optimal tax formula, which

leaves the effects of prices completely implicit and therefore provides little insight about how prices affect

optimal redistribution. In the next section, we provide a characterization of the role of prices for optimal

taxes.

4 Understanding the Impact of Prices and Non-homotheticities

In this section, we use a comparative statics approach to understand the mechanisms through which

optimal tax rates respond to prices in the presence of non-homotheticities.

20Note that this correction could be implemented through consumer prices using uniform commodity taxes, dropping the
requirement that commodity taxes should be budget neutral. Indeed, a homogeneous reduction in prices is equivalent to a
wage subsidy, so the optimal income tax could be given by the formula of Proposition 1 with α = 0 if all consumer prices
were multiplied by 1− α.

10



4.1 Assumptions

To streamline the analysis, we make the following assumptions. First, while sectors h and l were arbitrary

in the previous section, we now impose that l is a “necessity” good (therefore h is a “luxury” good) to

highlight the importance of non-homotheticities.21 Second, we make an assumption on the distribution

of skills.

Assumption A1. At initial prices, l is a necessity good: ∂z∗el is decreasing in post-tax income and

∂z∗El ≤ s̄l, where s̄l and ∂z∗El are the aggregate spending share and average marginal propensity to

spend on l.

Assumption A2. θπ(θ) = 0 and (1 + θπ′ (θ) /π (θ)) ϵ/ (1 + ϵ) ≤ 1 for all θ.

These assumptions allow us to derive clean theoretical results in the following section but are not

substantive restrictions. They do not affect the tax formulas of Proposition 2: A1 is used to sign the tax

response and A2 to characterize the monotonicity of the welfare response. We relax A1 in our quantitative

analysis in Section 5 to use observed spending patterns for all products and the income distribution. The

empirical income distribution in the United States satisfies A2,as discussed in Section 5.

Next we normalize the income effect of labor supply to 0 at initial prices:

Assumption A3. There are no income effects at initial prices, i.e. vz∗ = 1 ∀z∗.

This assumption is common in the optimal taxation literature and provides a useful benchmark to

facilitate comparisons between our results and prior work; it is relaxed Appendix E.22 To clarify its role,

note that household preferences can be written as Ψ (u (cl, ch))−
(
1 + ϵ−1

)−1
(z/θ)1+ϵ−1

. Here, the function

Ψ parametrizes the income effect of labor supply without affecting the household’s consumption demand

functions ck (z
∗, p).23 This normalization simplifies the labor supply side of the model, allowing us to

focus on how non-homotheticities in consumption preferences influence optimal redistribution, compared

to prior work where the benchmark formulas similarly do not feature income effects (e.g., Diamond (1998),

Saez (2001)).24

Finally, we make an assumption on social preferences:

Assumption A4. The social welfare function is linear, i.e. G(v(θ), θ) = λθv(θ).

Note that λθ can be used arbitrarily to parametrize the level of redistribution at initial prices. Assump-

tion A.4 is important to obtain closed form solutions to our comparative statics exercise in Proposition 2.

21The comparative statics approach we use in this section allows us to provide an explicit characterization of the impact of
non-homotheticities and market size effects on optimal taxation, in terms of observable statistics. With non-homotheticities,
it is not possible to obtain an explicit solution of the integral equation characterizing the optimal tax schedule in partial or
general equilibrium. First, non-homothetic demand systems do not yield closed form expressions for both demand functions
and marginal utility of income – with some exceptions e.g. Stone-Geary preferences, which are too limited to capture the
impact of price changes observed in the data. Second, in general, the Pareto weights will depend on agents’ disposable income
and thus on on the income tax T (z). With homothetic utility, quasilinear preferences in consumption, and a linear social
welfare function, a closed form solution can be obtained in some cases (e.g., Eeckhout et al. (2021)).

22While the traditional empirical literature suggests income effects are small (e.g., Imbens et al. (2001), Cesarini et al.
(2017)), more recent evidence is more mixed (Giupponi (2024), Golosov et al. (2024), Vivalt et al. (2024)).

23Details on how to choose Ψ are provided in Section 5: see footnote 43.
24In Appendix E, we provide comparative statics formula with non-zero income effects. We also provide in Proposition

E3 a qualitative characterization of the response of redistributive policies to price changes that generalizes the results of
Proposition 3. Finally, we provide closed-form formulas for the top tax rates and show that, for reasonable calibrations,
income effects can exacerbate the regressive impact of the price changes described in this section.
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We provide comparative statics formulas with a general G in the appendix, a qualitative characterization

in Proposition 3, and a quantitative analysis in Section 5.

In the remainder of this section, we mostly analyze how the optimal tax schedule and household wel-

fare respond to changes in the relative price of the necessity good. To isolate redistribution effects from

aggregate efficiency concerns, we consider a compensated price change: the price of the necessity rises

while that of the luxury falls, keeping the average price level constant. Formally, we consider an increase

dlnp̄l, such that dlnpl = s̄hdlnp̄l and dlnph = −s̄ldlnp̄l.25

4.2 Response to a Price Change with Linear Production Functions: Channels #1

and #2

To first isolate the role of non-homotheticities, we first focus on the response of the optimal income tax

schedule to a price change when prices are fully exogenous. This is the case when α = 0, which imposes

pk = ϕk (ξk) and χk (Ck, ξk) = ϕk (ξk)Ck with both competitive and monopolistic firms (linear production

functions). We show that the redistributive effects of prices are amplified through the tax system via two

channels: a change in the value of redistribution (Channel #1) and a change in the efficiency cost of

taxation (Channel #2).

Response with a Linear Social Welfare Function

We first consider the case of a linear social function which allows us to derive closed form solutions. Prices

affect both the value and the cost of redistribution around θ (i.e. around the F (z(θ)) percentile of the

income distribution). While these effects are only implicit in Proposition 1, we now make them explicit

for a marginal change in the price of good k, pk. Recall that in Proposition 1 the optimal tax rate is

defined implicitly by

T ′

1− T ′ =
1

zζ̃f(z)

Ez′>z (1− g)︸ ︷︷ ︸
Welfare effects

−Ez′>z

(
T ′

1− T ′ η̃

)
︸ ︷︷ ︸

Behavioral effects

 . (2)

Under A3, we have zζ̃f(z) = ϵ/ (ϵ+ 1) θπ (θ), independent from prices and taxes, so we only need to

derive the change in the Welfare and Behavioral Effects terms, the two channels of the adjustment of the

tax system. We now provide heuristic derivations these channels, presenting the proofs in Appendix A.2.

Welfare Effects (Channel #1). Under A3−A4, the derivative of Pareto weights with respect to prices

pk satisfies pk∂pkg = −g∂z∗ek, with ∂z∗ek the marginal propensity to spend on good k. Indeed, at the

25Any price increase can be viewed as the sum of (i) a uniform price increase and (ii) a change in relative prices. The relative
price effect is central to our analysis while the uniform price change simply scales real wages and has limited interaction
with consumption heterogeneity. One of the main insights of the section is that the planner favors high income households
when the relative price of necessity increases, i.e. the welfare of low income households falls. The advantage of considering
a relative price change is that, as shown in Proposition 3, the planner could, in principle, redistribute resources to keep the
welfare of low-income households unchanged. If we analyzed an uncompensated increase in the price of necessities, the overall
productivity of the economy would decline, reducing the capacity of the planner to redistribute. In that case, a reduction
in the utility of low-income households would be less surprising, as full compensation would not be feasible. We report the
comparative statics for uniform price increases in Appendix A.
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initial prices the social value of a dollar transfer to an agent with income z is given by the Pareto weight

g. With this additional dollar, the agent spends ∂z∗ek on good k. When the price of k increases, the

purchasing power of the agent is therefore reduced at the margin by ∂z∗ek. Since an agent at z can buy

less with an additional dollar, the value of a dollar transfer is reduced. This channel can be thought of as

a “terms of trade effect for redistribution.”

The change in the optimal income tax for type θ is determined by the change in individual purchasing

power for type θ relative to the average change in purchasing power, E (g∂z∗ek). The planner decreases

the tax rate at θ – to redistribute more to agent with income z(θ′) > z(θ) – if a dollar transfer above

θ buys relatively more welfare than below θ, that is if the (marginal) purchasing power after the price

change decreases relatively less above than below. For the necessity good l, the marginal propensity to

spend decreases with income, so the tax rate is lowered everywhere in response to an increase in pl.

Therefore, the adjustment in tax rates pkd
dpk

{
T ′

1−T ′

}
through Channel #1, the change in the value of

redistribution at θ, is given by:

1

zζ̃f(z(θ))
Ez>z(θ)

(
g (∂z∗ek − E (g∂z∗ek))

)
.

By contrast, when preferences are homothetic, there is no effect on the tax rate since the change in

purchasing power is uniform along the income distribution.

Behavioral Effects (Channel #2). Under A3−A4, the derivative of the income effect with respect to

consumer prices pk satisfies pk∂qk η̃ = −zζ̃((1− T ′)∂z∗z∗ek . Under A1, the marginal propensity to spend

on good l decreases, ∂z∗z∗ek > 0. An increase in the price of l causes a fall in the households’ (marginal)

purchasing power, which is smaller at higher income levels. Therefore a dollar transfer to an agent makes

work more valuable – since they now have a higher real wage at the margin – and stimulates labor supply

through an income effect.

Consequently, an increase in the price of the necessity good l increases the cost of taxation at θ: raising

the tax rate at θ lowers the income of all agents with θ′ > θ, and reduces their labor supply. Through

this mechanism, the tax rate should be reduced at θ. More formally, as ∂z∗el is decreasing, an increase in

pl convexifies the indirect utility of consumption and therefore increases the income effect.

As above, what ultimately determines the change in the optimal income tax is the increase in the cost

of taxation at θ relative to the average change in the cost of taxation across the distribution. Thus, the

adjustment in optimal tax rates due to Channel #2, the change in the cost of redistribution at θ, is given

by:

1

zζ̃f(z(θ))
Ez>z(θ)

(
T ′zζ̃∂z∗z∗ek − gE

(
T ′zζ̃∂z∗z∗ek

))
.

As the first channel, this channel does not operate when preferences are homothetic, since ∂z∗z∗ek = 0.

Taking stock. Summing and rearranging the two channels above,26 we obtain a Proposition character-

izing the response of the tax schedule to consumer price changes. This Proposition also shows formally

that the adjustment of the tax system amplifies the redistributive effects of price changes.

26We use the optimality of the schedule – in equation 2– to express the Pareto weight in function of the tax schedule.
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Proposition 2. Under A3−A4, the response of the optimal tax rate at θ to an increase in the price of

k when α = 0 is:

pkd

dpk

{
T ′

1− T ′

}
=

1

zζ̃f(z(θ))
Ez>z(θ) (∂z∗ek − ∂z∗Ek)−

T ′

1− T ′ (∂z∗ek − ∂z∗Ek) . (3)

With homothetic preferences (∂z∗eh = sh), we have dpkT
′ = 0. With non-homothetic preferences, under

A1 the response of the optimal tax schedule to changes in the price of the necessity (k = l) and luxury

(k = h) goods satisfies :

pld

dpl

{
T ′

1− T ′

}
< 0 and

phd

dph

{
T ′

1− T ′

}
= −pld

dpl

{
T ′

1− T ′

}
> 0 ∀θ.

Proof: See Appendix A.2.2. Proposition E2 in Appendix E provides a generalization of this result, with

general household preferences and in a multi-sector economy with potential spillovers across sectors.

The advantage of Proposition 2 is twofold. First, it allows us to quantify the effect of prices on the

tax rate as a function of observable quantities. For example, we do not need to explicitly specify Pareto

weights to evaluate the impact of prices.27

Second, we can unequivocally sign the impact of prices on taxes. When the marginal propensity to

spend on good k decreases (i.e, k is a “necessity” good), the tax rate decreases everywhere in response to

an increase in pk. The tax burden decreases at the top of the distribution and increases at the bottom:

the planner redistributes to higher-income households. This result might seem surprising, because the

optimal tax schedule amplifies the redistributive effects of price changes instead of offsetting them, but

our analysis explains why: when k is a necessity good, the social value of a dollar transfer decreases less

for higher-income than lower-income households (Channel #1), and the income effects increase more at

the top (Channel #2).

It is then simple to characterize the welfare consequences of price changes. By itself, an increase in the

relative price of necessities reduces the utility of households at the bottom of the income distribution, as

necessities are a larger part of their budget. As the planner responds to the price increase by decreasing

tax rates, the transfer to low-income households is reduced, which lowers their utility further. Through

the same channels, high-income households strictly benefit from the price increase and the welfare gains

are increasing in income. Note that it would be feasible to compensate all households28 in a budget neutral

fashion, but this is not optimal because of Channel #1 and #2. These observations are formalized in the

27While social preferences do not appear in our formulas, they still play an implicit role. Note that the derivative of the
tax rate dpkT

′ is of order (1− T ′)2. The stronger the preference for redistribution, the higher the (initial) tax rate, and the
lower the sensitivity of the tax rate to changes in prices. To illustrate, assume that the marginal propensity to spend on k
is constant above an arbitrary θ0. Denoting ḡ(θ) = E(g | θ′ > θ) the average Pareto weight for households with ability larger
than θ, we have for θ ≥ θ0:

pkd

dpk

{
T ′

1− T ′

}
=

ḡ(θ)

1− ḡ(θ)

T ′

1− T ′ (∂z∗ek − ∂z∗Ek) .

For a luxury good (k = h), an increase in pk reduces the value of a transfer to high income households and tax rates are
set higher at the top of the distribution. However, if ḡ(θ) is small then the increase in tax rates is small. Intuitively, if the
planner does not value the welfare of higher ability households, price changes have no effects on top tax rates as long as they
do not change the cost of taxation through labor supply. The derivation can be found in Appendix A.2.2 on page A13.

28By “compensating”, we mean keeping their utility equal to their pre-price change level.

14



corollary below.

Corollary 1. For an increase in the relative price of necessities dlnp̄l, with dlnpl = s̄hdlnp̄l and dlnph =

−s̄ldlnp̄l, the compensating scheme dT (z (θ)) = − (sl − s̄l) z
∗ (θ) dlnp̄l is feasible but only optimal when

preferences are homothetic. With non-homothetic preferences, under A1 − A4 we have dV (θ) /dp̄l < 0

and dV
(
θ̄
)
/dp̄l > 0 ; dV (θ) /dp̄l is increasing in θ and E (gdV (θ) /dp̄l) = 0.

Proof: See Appendix A.2.2.

Rawlsian social preferences. The formulas of Proposition 2 can be adapted when social preferences are

Rawlsian. In that case, we have:

pkd

dpk

{
T ′

1− T ′

}
=

T ′

1− T ′
(
E
(
∂z∗ek | z′ > z(θ)

)
− ∂z∗ek

)
Even in the extreme case were the social planner only values the welfare of the poorest agent, an increase

in the price of necessities leads to more redistribution towards higher income households. This is entirely

due to the impact of the price change on labor supply. An increase in the price of necessities increases

the income effect on labor supply (∂ql η̃ > 0) and decreases the income tax.

Response with a Non-Linear Social Welfare Function

We now consider the case of a non-linear social welfare function, relaxing assumption A4. While the

concavity of the welfare function does not affect the initial level of redistribution,29 it impacts the redis-

tributive effects of price changes. With a concave social welfare function, an increase in the tax burden

or in prices has a direct “income effect” on Pareto weights: reducing the (real) disposable income of an

agent directly increases the social value of a transfer to this agent. There is therefore an incentive for the

social planner to compensate lower-income households when they face higher prices.

As the analysis with a concave welfare function is complex,30 we present first a very simple model

to convey the intuition. Consider a finite type version of our model: the poor (p), middle-class (m) and

rich (r) households have types 0 = θp < θm < θr, so that only the middle income agent faces a positive

marginal tax rate.31 Households have the same preferences as in the continuous type version (satisfying

A1-A3). More specifically, we assume a household of type i has a marginal propensity to spend on the

necessity product, ∂z∗el,i, satisfying ∂z∗el,p > ∂z∗el,m = ∂z∗El > ∂z∗el,r. In words, the marginal propensity

to spend on the necessity good is highest for the low-income households, followed by the middle class –

whose propensity to spend on this good is assumed to be equal to the aggregate propensity – and the

rich. As before, with a linear social welfare function (G′′ (V ) = 0), the change in tax rate in response to

an increase in the relative price of necessities dT ′
m/dp̄l satisfies:

1

1− (θm/θh)
1+ 1

ϵ

πm
d

dlnp̄l

{
T ′
m

1− T ′
m

}
= (∂z∗el,h − ∂z∗El)πh < 0, (4)

29As long as G′ (V (θ)) ∝ λθ,the initial tax rate is the same.
30With a concave social welfare function, the system determining optimal taxes becomes an integro-differential equation

with non-constant coefficients, which does not have a closed form solution.
31The low income agent does not work and there is no distortion at the top. We introduce a three-agent model rather

than a two-agent model to avoid introducing a new version of assumption A2.
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which is essentially our formula 3evaluated at ∂z∗el = ∂z∗El. The change in welfare of household i, dVi/

dp̄l, satisfies dVp/dp̄l = dVm/dp̄l < 0 < dVr/dp̄l.

With a concave social function G satisfying G′′ (V ) < 0 , we denote the change in welfare of household

i as dV G
i /dp̄l. The change in welfare of household i satisfies dV G

i /dp̄l = dVi/dp̄l/ (1 + G) with G > 0.32

The parameter G captures the income effect on Pareto weights: the price change and the tax reform of

equation 4 reduce the welfare of poor and middle income households, which raises their Pareto weights.

As a result, we have dVp/dp̄l < dV G
p /dp̄l < 0: a concave social welfare function mutes the incentive to

redistribute to the high income household. However, the planner still does not offset the loss to poorer

households—even though such compensation is implementable – and the price change remains regressive

for any concave G. 33

We now show that this remains true with continuous types. In the appendix, we also provide the compar-

ative statics formulas that we use to quantitatively evaluate the impact of price changes with a concave

welfare function.

Proposition 3. Asssume that −G′′ (V, θ) /G′(V, θ) is positive and non increasing (e.g., a CARA or

CRRA function) and that A1 − A3 are satisfied. For an increase in the relative price of necessities, the

compensating scheme dT (z (θ)) = − (sl − s̄l) z
∗dlnp̄l is feasible but only optimal when preferences are

homothetic.

With non-homothetic preferences, the change in welfare of agent θ, dV G/dp̄l (θ), satisfies dV/dp̄l (θ) <

dV G/dp̄l (θ) < 0 , dV G/dp̄l (θ) − dV G/dp̄l (θ) < dV/dp̄l (θ) − dV/dp̄l (θ) and E
(
gdV G (θ) /dp̄l

)
= 0,

where dV/dp̄l (θ) is the welfare impact of price change with a linear social welfare function satisfying

λθ ∝ G′(V (θ) , θ).

If in addition θ̄ = ∞, the distribution of type is bounded by a Pareto distribution, θπ′(θ)/π(θ) ≤ −1−γ
for θ large enough, and G(V, θ) is either CARA or CRRA, then we have dV G/dp̄l (θ) ∽ dV/dp̄l (θ) at

infinity.

Proof: See Appendix A.2.2. Proposition E3 in Appendix E provides a generalization of this result, with

general household preferences.

As in Proposition 2, it would be feasible to compensate all households in a budget neutral fashion for

relative price changes but the planner still optimally decreases the welfare of lower income households.

Intuitively, fully compensating agents for a price change leaves their disposable income unchanged. This

neutralizes the “income effect” of prices on social welfare weights, but leaves unchanged the valuation

effects of prices and their effect on labor supply derived in Proposition 2. For an increase in the relative

price of necessities, fully compensating agents cannot be optimal: there is an incentive to redistribute

to higher income through Channel#1 and #2. Note however that the concavity of the welfare function

mutes the impacts of Channel#1 and #2: lower income households lose less than with a linear function

(dV/dp̄l (θ) < dV G/dp̄l (θ) < 0) and utility increases at a lower rate across types (dV G/dp̄l (θ) − dV G/

dp̄l (θ) < dV/dp̄l (θ)− dV/dp̄l (θ)).

32The derivations for the simple example can be found in Appendix A.2.2on page A.19.
33The change in tax rate with a concave G, dT ′G

m/dp̄l, satisfies dT
′G
m/dp̄l = (dT ′

m/dp̄l − G (1− T ′
m) (∂z∗El − s̄l)) / (1 + G) .

The first term is the change in taxes with a linear G while the second is the compensating scheme that would fully offset the
effect of price changes.
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Finally, the last item of Proposition 3 shows that the concavity of the social welfare function does not

matter for the change in welfare of high income households. Intuitively, if the Pareto weights are small at

the top of the income distribution, the planner does not directly value a change in utility of high income

households. The only determinant of taxes are the one described by Channel#1 and #2 and, as a direct

corollary, the income tax rate at the top is left unchanged by the concavity of the welfare function.

4.3 Response to a Price Change with Non-Linear Production Functions

We now turn to the case of non-linear production functions. Non-linearity introduces interaction between

demand and supply. As prices change, so does demand for the two goods, which generates a supply side

response, further changes in demand, and so on. In this section, we investigate this feedback loop. We

show that when α > 0, the response of taxes to an increase in the price of necessity is amplified and leads

to further redistribution towards higher-income households.

To formally define an exogenous price change with a non-linear production function, we normalize the

supply shifter ξk such that an increase in ξk corresponds to an increase in the price of k, pk. We consider a

cost shifter p∗k = 1/∂ξkϕk, which implies ∂p∗kϕk = 1 and ∂p∗kχk = (1− α+ tw)
−1Ck.

34 As before, we define

an increase in the relative price of the necessity dlnp̄l, such that dlnp∗l = s̄hdlnp̄l and dlnp
∗
h = −s̄ldlnp̄l.

In addition, we introduce τl which captures the impact of non-homothecities on the sensitivity of

aggregate demand to prices:

τl (z) ≡ (1− tw)(1− T ′)

(
1

zζ̃f(z)
Ez′>z (∂z∗el − ∂z∗El) + ∂z∗el − ∂z∗El

)
< 0.

To understand the role of τl, consider the impact of an increase in the relative price of l when α = 0 (no

supply side adjustments). As shown in the previous section, optimal tax rates decrease in response to

the price increase. Furthermore, we show in Lemma A3 of Appendix A.2.3 that the change in relative

demand for necessity satisfies:35

Ĉl − Ĉh = −σ︸︷︷︸
Substitution

− ζ

s̄hs̄l
E
( z
E

(τl + ∂z∗El − s̄l)
2
)

︸ ︷︷ ︸
Income

.

When preferences are homothetic, the income effect is zero and demand for l decreases only through

a substitution channel. When preferences are nonhomothetic, relative demand for necessities further

decreases through an income effect. Indeed, an increase in the price of necessities relative to luxuries has

a negative income effect on lower income households, as necessities constitute a larger portion of their

consumption basket.36 Since tax rates decrease, the income of poorer households is further lowered. Lower

income households have a higher propensity to spend on necessities, so the aggregate share of necessities

decreases through income effects: income is reallocated away from necessities.

34With monopolistic competition (τw = α), this is obvious since χk = Ckϕk so ∂p∗
k
χk = Ck. With competitive firms

(τw = 0), we can rewrite the pricing function as ϕk(ξk, Ck) = ϕ̃k(ξk)C
−α
k = ∂Ckχk(ξk, Ck) so χk(ξk, Ck) = ϕk(ξk, Ck)Ck/

(1− α) + χk, where the potential fixed cost χkis assumed to be independent from ξk.
35In this expression, the change in demand is due to the combination of the change in prices and the change in taxes. With

the change in prices alone, we would have Ĉl − Ĉh = −σ − ζ
s̄hs̄l

E
(

z
E
(∂z∗el − s̄l) (τl + ∂z∗El − s̄l)

)
.

36The income effect on consumption due to heterogeneity in spending is captured in the first term in τl. The second term
captures the change in real wages when the price of l increases.
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With these definitions, we can now characterize the response of the tax rate to price changes with

non-linear production functions. We first consider the partial equilibrium response, when prices do not

endogenously respond, so that dpk/dp
∗
k = ∂pk/∂p

∗
k = 1. We then derive the general equilibrium response,

when prices adjust to their new equilibrium level.

Proposition 4. Under A3 − A4, the partial equilibrium response of the income tax to a change in the

relative price of necessities is:

∂

∂lnp̄l

{
T ′

1− T ′

}
=

1− tw

zζ̃f(z(θ))
Ez>z(θ) (∂z∗el − ∂z∗El)−

(
T ′

1− T ′ + tw

)
(∂z∗el − ∂z∗El) .

Under A1, ∂p̄lT
′ is negative for all θ.

In general equilibrium, the response of the income tax to a change in the relative price of necessities

is:

dT ′

dp̄l︸︷︷︸
GE response

= (1− α (σ +Ω))−1 ∂T ′

∂p̄l︸︷︷︸
PE response

,

with Ω = 1
1−tw

ζ
s̄hs̄l

(
Ez

(
(τl + ∂z∗El − s̄l)

2
)
+ αζ

1−tw−αζ (Ez(τl + ∂z∗El − s̄l))
2
)
> 0. When α > 0, dT ′

dp̄l
<

∂T ′

∂p̄l
< 0; when α < 0, ∂T ′

∂p̄l
< dT ′

dp̄l
< 0.

Proof: See Appendix A.2.3. Proposition E4 in Appendix E.3.2 provides a generalization of this result,

with general household preferences and in a multisector economy with potential spillovers across sectors.

The main insight of Proposition 4 is that the response of the supply side amplifies the response of the

tax rate to supply shifters when α > 0 and mutes it when α < 0. With α > 0, the amplification is driven

by the equilibrium response of the relative price of l, given by:

dln (pl/ph)

dlnp̄l
= − 1

1− ασ︸︷︷︸
Amplification

through subsititution effects

−αΩ︸ ︷︷ ︸
Amplification

through income effects

.

The increase in the relative price of l is amplified through income and substitution effects in general

equilibrium. First, as the relative price of l increases, agents substitute the necessity good for the luxury

good. The market for h expands, so the price of h further decreases when there are returns to scale

(α > 0), which creates more substitution. This is the only channel of amplification when preferences are

homothetic, since the shares of h and l remain constant as income shifts.

When preferences are nonhomothetic, the share of l further decreases through income effects. This

amplification is denoted by Ω and operates through two channels, driven respectively by changes in relative

prices and in the average price index.

The first term in Ω, Ez

(
(τl + ∂z∗El − s̄l)

2
)
, corresponds to the reduction in the share of l in response

to an increase in the relative price of l. Lower income households are more affected, and, as they consume

more of good l at the margin, the direct impact of the price increase is to reduce the aggregate expenditure
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share of l. In addition, tax rates decrease everywhere, as it is more valuable to redistribute to higher

income households. This optimal adjustment of the schedule, given by −∂p̄lT ′, amplifies the reallocation

of income towards the luxury good. As the aggregate expenditure share of l37 decreases, the relative price

of l increases through returns to scale (α > 0), and agents further reallocate their income towards the

necessity bundle.

The second term in Ω, αζ
1−tw−αζ (Ez(τl + ∂z∗El − s̄l))

2, captures a further reduction in the share of l

stemming from an endogenous fall in the average price index. When the relative price of h decreases, it

can be shown that real wages increase on average across agents, hence labor supply increases.38 Higher

labor supply raises nominal incomes and demand for both the necessity and the luxury goods, which

leads to a fall in both prices. Thus, on average households’ real incomes grow and they reallocate their

expenditures towards the luxury good. The relative price of the luxury good therefore decreases through

returns to scale (α > 0) and the planner responds by lowering tax rates. Lower taxes further stimulate

aggregate labor supply and increase real incomes, generating a further fall in the price index, and, as

households become richer on average, more reallocation towards luxuries, inducing a further fall in the

price of the luxury good through returns to scale, and so on.39

Redistribution towards higher income households is therefore amplified, through general equilibrium

effects, when the relative price of l increases. The amplification is stronger when the price elasticity α or

the elasticity of substitution σ are larger. Moreover, the amplification is stronger when non-homotheticities

are more pronounced, as they accentuate reallocation towards necessities through income effects in Ω.40

5 Quantitative Analysis

In this section, we examine the quantitative importance of our theoretical results about increasing returns,

non-homotheticities and price shocks for the optimal tax schedule. We first present the setting and main

specifications (Section 5.1). We then implement our comparative static approach, studying a general

first-order approximation (Section 5.2). Finally, we make additional parametric assumptions on non-

homotheticities to study the optimal tax schedule and the feedback loops between redistribution and

endogenous prices (Section 5.3).

5.1 Setting

Starting from the general model with multiple goods in Appendix E.1, we consider a standard additively

separable specification (e.g., Saez (2001)):

U(z∗, z,p, θ) = v (z∗,p)− ψ
(z
θ

)
,

37The coefficient s̄hs̄lin the formula captures the decrease in the share of l relative to h as ds̄l/s̄l − ds̄h/s̄h = ds̄l/(s̄hs̄l).
38Keeping taxes fixed, an increase in the relative price of l increases income by ζEz(s̄l) − ∂z∗el). Indeed, the

change in real wage for household θ is ŵ∗
t (θ) = −∂z∗el (θ) p̂∗l − ∂z∗eh (θ) p̂∗h = − (∂z∗el (θ)− s̄l) d log p̄l, so E (ŵ∗

t (θ)) =
− (∂z∗El − s̄l) d log p̄l > 0. Thus, the change in real wages is positive under our Assumption A2, ∂z∗El ≤ s̄l. In addition, the
decrease in tax rates further stimulates labor supply. The total gain in aggregate income is given by −ζEz(∂z∗El − s̄l + τl).

39We show in our working paper (Jaravel and Olivi (2024)) that the general equilibrium response can be decomposed into
five channels, which are summarized and discussed in Appendix Figure A1.

40More precisely, comparing two economies A and B where ∂z∗e
A
h −∂z∗eBh is increasing and A and B are otherwise identical,

then we have ΩA ≥ ΩB and the amplification through income effects is stronger.
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where ψ
(
z
θ

)
≡ 1

1+ 1
εz

(
z
θ

)1+ 1
εz is the isoelastic utility cost of earning z given ability θ, and v (z∗,p) is

the indirect utility function given prices and disposable income. Following the nonparametric evidence

of Kleven and Schultz (2014), we set εz = 0.214; for robustness, we consider εz = 0.33 as in the meta-

analysis of Chetty (2012). We calibrate the skill distribution f(θ) nonparametrically to match the income

distribution at the observed tax schedule, using data from Hendren (2020).

Returns to scale. As before, returns to scale are governed by the parameter α. There is an emerging

empirical consensus that increasing demand leads to higher productivity and lower prices (in the long run),

and recent papers provide causal estimates for α. Using a shift-share instrument with NielsenIQ data in

the U.S., Jaravel (2019) finds that when demand increases by one percent, consumer prices for continued

products fall by 0.42 percent. When accounting for changes in product variety, the consumer price index

falls by 0.62 percentage points. Leveraging data on durable good industries in the Chinese manufacturing

sector and an IV design based on potential market size, Beerli et al. (2020) estimate that increasing market

size by one percent leads to a TFP increase of 0.46 percent. Using trade shocks as instruments, Bartelme

et al. (2019) estimate sector-level economies of scale and find statistically significant scale elasticities

in every 2-digit manufacturing sector, with an average of 0.13.41 Given this range of estimates, we set

α = 0.30 in our baseline specification and study sensitivity.42 For our comparative statics exercise below,

we also analyze the case α = 0 (linear production functions) which is the benchmark of the public finance

literature and allows us to isolate the impact of non-homotheticities in consumption preferences.

For the comparative static analysis in Section 5.1, α can be viewed as the “local” returns to scale.

When studying the optimal tax schedule in Section 5.3, we specify the global relationship between the price

pi of the good produced in sector i and equilibrium quantities in that sector, setting pi = γiQ
−α
i ∀i ∈ I.

We use the observed equilibrium to calibrate the set of parameters γi, as discussed in Online Appendix

D.1.2.

Preferences. We set the indirect utility function v (z∗,p) to be either homothetic or non-homothetic

in the analysis below to isolate the quantitative impact of non-homotheticities on the optimal schedule.

A non-homothetic utility function introduces curvature in the agent’s indirect utility from consump-

tion, which affects the social marginal utility of disposable income. Therefore, we normalize the curvature

of utility at fixed prices, so that we mechanically reach the same optimum with homothetic and non-

homothetic utility under constant returns to scale.43 This approach ensures that the comparison between

41Other papers provide empirical evidence for returns to scale in different settings. Acemoglu and Linn (2004) provide
empirical evidence that market size influences entry of new drugs and U.S. pharmaceutical innovation. Weiss and Boppart
(2013) show that TFP growth is higher in more income-elastic sectors, using national accounts data covering the entire U.S.
economy. Analyzing NielsenIQ scanner data across local markets, Handbury (2019) finds that the products and prices offered
in markets are correlated with local income-specific tastes. Focusing on housing and local amenities, Diamond (2016) and
Couture et al. (2020) find that amenities adjust endogenously to an increase in local demand and lower the price index.

42The closest empirical evidence to discipline our model is provided by Jaravel (2019), who looks directly at consumer
prices rather than TFP. For continued products, the estimate for α varies between 0.23 and 0.458, depending on the set
of controls, and α = 0.30 cannot be rejected in any of the specifications. The estimates are larger when product entry is
accounted for, hovering between 0.38 and 0.67 depending on the specification.

43We work with a “deflated indirect utility function” ṽ(z∗,p), defined such that

ṽ(z∗,p) = v−1(v(z∗,p),pCRS),

where pCRS are the prices prevailing under constant returns (which are normalized to one in the simulations, without loss of
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the homothetic and non-homothetic specifications captures the channel of interest, namely differences

stemming from endogenous prices and their impact on the marginal utility of disposable income across

the skill distribution, rather than assumptions about curvature per se. Our results are thus comparable to

the benchmark models of Mirrlees (1971) and Saez (2001), with no additional curvature and no additional

income effects absent returns to scale, despite the introduction of non-homothetic utility.

For the comparative static analysis, we directly use the formulas derived in Section 4. In partial

equilibrium, we only need to know the local marginal propensities to consume across goods for agents

across the income distribution, ∂z∗ei. We measure marginal propensities to consume non-parametrically

from expenditure shares across 248 product categories. This data set covers the full consumption basket

of American households, linking the CPI price data set to the consumption patterns of the Consumer

Expenditure Survey (CEX) to the Consumer Price Index (CPI), following Jaravel (2019).

As shown in Proposition 4, the demand elasticity of substitution σ between products plays an impor-

tant role for the feedback loops in general equilibrium. We take estimates from the literature as bounds

for the elasticity of substitution between our product categories. Based on estimates of the elasticity of

substitution between goods and services, two broad categories of consumption which are likely to be less

substitutable than our 248 categories, we set σ = 0.6 as a lower bound (see Comin et al. (2021) and

Cravino and Sotelo (2019)). Given estimates on the substitutability between products within the same

detailed product category, we take σ = 2 as our upper bound (e.g., Broda and Weinstein (2006), Broda

and Weinstein (2010), DellaVigna and Gentzkow (2019), and Handbury (2019)).

To study the optimal tax schedule beyond the comparative static approach, we need parametric

assumptions on the utility function. As further described in Subsection 5.3.2, we use non-homothetic

CES preferences as in Hanoch (1975), Matsuyama (2019), and Comin et al. (2021).

Social preferences for redistribution. For the comparative static approach in Section 5.2, the for-

mulas derived in Section 4 show that social preferences for redistribution can be recovered from the initial

tax schedule. Taking the observed tax schedule as optimal obviates the need for specifying the social

welfare function explicitly. For the analysis of the optimal tax schedule in Section 5.3, the planner’s social

welfare function, G (U(θ,p)), is assumed to be CRRA, with a relative risk aversion coefficient of one in

our baseline specification and 0.5 for sensitivity.

5.2 Comparative Statics

Using the comparative static approach introduced in Section 4, we now examine the quantitative response

of the tax schedule to exogenous price shocks.

Starting from the observed tax schedule, we implement the formulas from Section 4 characterizing

the response to a price change. We obtain observed price shocks for the period 2004 to 2015 over 248

product categories covering the full consumption basket of American households, linking the CPI price

data set to the consumption patterns of the CEX. Empirically, inflation is lower in product categories

with higher income elasticities: how large is the impact on the optimal tax schedule? To isolate the role

of non-homotheticities, we first assume linear production functions (α = 0, as in Section 4.2). We then

generality). We have ṽ(z∗,pCRS) = z∗,which is identical to the homothetic specification. Online Appendix D.2.2 discusses
the properties of the deflated non-homothetic indirect utility function.
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Figure 1 Optimal Tax Schedule and Observed Price Shocks, Linear Production Functions

A. CEX data B. NielsenIQ scanner data

Notes: both panels of this figure focus on the partial equilibrium response of the optimal tax schedule to price shocks, as in
Proposition 2. The initial tax schedule is taken from Hendren (2020). In Panel A, the CEX-CPI data set is used to compute
inflation rates from 2004 to 2015 across the income distribution. Panel B uses the NielsenIQ scanner data at different levels of
aggregation to measure differences in inflation rates across the income distribution between 2004 and 2015. The adjustment
for product variety uses a CES price index.

explore how general equilibrium effects alter this response under increasing returns to scale (α > 0, as in

Section 4.3).

Main results, linear production functions. Panel A of Figure 1 shows the changes in the optimal

tax schedule in response to observed price shocks from 2004 to 2015, using the full set of 248 product

categories from the CEX. Cumulative inflation during this period ranges from 29.4% of the distribution

at the bottom of the income distribution to 24.5% at the top (Online Appendix Figure A2.A). As in

Proposition 2, we focus on characterizing the response of the optimal tax schedule to changes in relative

prices, keeping the average price level constant: relative prices rise by 3.3% at the bottom of the income

distribution and fall by 1.6% at the top (Online Appendix Figure A2.B).44

44The literature has documented a long-run trend of inflation inequality in the United States, with a rate of divergence
in relative price indices across the income distribution similar to the specific period we study here. While in our data the
annual inflation difference is 37 basis points between the bottom and the top of the income distribution between 2004 and
2015, Jaravel (2024), who use prices indices that follow exactly the same procedure as the official CPI, obtains an annual
inflation gap of 41 basis points between 2002 and 2024. Jaravel and Lashkari (2023) find that, on average over the 1955–2019
period, the annual inflation rate was about 35 basis points lower for the top relative to the bottom of the income distribution.
While the inflation inequality trends are sustained over the long run, the patterns differ in certain periods. Garner et al.
(1996) found there was no meaningful inflation inequality between 1984 and 1994. Jaravel (2024) shows that the patterns
of inflation inequality were also different during the Covid-19 pandemic: between May 2020 and May 2022, the cumulative
inflation rates were inverse U-shaped, increasing from 13% at the bottom of the income distribution to 14.7% for the middle
class, and falling back to 13.5% at the top of the income distribution. While long-term inflation inequality in countries other
than the United States has not been studied systematically, a growing literature studies inflation inequality around the world
in response to exchange rate shocks, which heterogeneous findings depending on the context. Cravino and Levchenko (2017)
find that the 1994 Mexican devaluation fueled inflation inequality: two years after the devaluation, the cost of living for
the bottom income decile rose over 50% more than the cost of living for the top income decile. In contrast, Breinlich et al.
(2022) find no evidence of inflation inequality when studying the depreciation of the pound sterling caused by the Brexit
referendum: the price indices of income groups across the distribution were similarly affected by the shock. Finally, Auer
et al. (2024) find that the 2015 Swiss Franc appreciation disproportionately benefited low-income households, whose price
indices fell relatively more than those of high-income households.
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We compute the tax schedule response using the formula in Proposition 2, which remains valid in an

economy with n sectors, as shown in Appendix A.2.4. Under linear production, the tax response depends

only on marginal propensities to spend and captures Channels #1 and #2 discussed in Section 4.2. This

allows us to isolate the impact of non-homothetic preferences. The response is substantial: marginal

tax rates fall by about 10pp at the bottom of the income distribution; the marginal tax rates gradually

converge back to the observed tax schedule at the top. Indeed, because inflation is lower in the product

categories for which higher-skill agents have a higher marginal propensity to consume, it is optimal for

the planner to redistribute toward them, which can be done most efficiently by reducing marginal tax

rates at the bottom of the income distribution.45 This result shows that inflation inequality generates a

sizable regressive response of the tax schedule in partial equilibrium.

To understand the magnitude of the tax response at the bottom, note that for an arbitrary price

change, the formula of Proposition 2 can be re-expressed as:46

dT ′(θ) = − g(θ)

g(θ)− 1
T ′ (1− T ′)︸ ︷︷ ︸

Preferences for redistribution

(dlnp (θ)− dlnp̄)︸ ︷︷ ︸
Marginal Price Index

,

where the marginal price index for household θ is defined as dlnp (θ) =
∑n

k=1 ∂z∗ek (θ) dlnpk, and the

average marginal price index is dlnp̄ =
∑n

k=1 ∂z∗Ekdlnpk.

Using this formula, we can plug in values to understand what drives the sizable tax response at the

bottom of the income distribution. First, we can use observed tax rates to back out preferences for

redistribution. In the data (Hendren (2020)), the pre-shock marginal tax rate range from 27% at the

bottom to 40% at the top. These rates are relatively low compared to the theoretical optimal tax rates

obtained in Saez (2001) using social welfare function with a CRRA coefficient of 1 (ranging from 80% at

the bottom to 60% at the top). The observed tax rates thus imply limited redistribution to low-income

households, and hence a relatively low Pareto weight at the bottom, which we estimate to be g(θ) = 1.1.47

This value indicates that the planner values the bottom-income agent only 10% more than the average.

Substituting into the formula, the redistribution term is approximately equal to 2.2.

Second, to gauge the role of non-homothetic preferences, we approximate the change in marginal price

index using the change in relative price index observed in the CEX.48 Given that prices increase by 3.3%

more at the bottom of the income distribution, relative to average, the formula implies a fall of the bottom

tax rate of 7.2 percentage points.49 This sizable response, of the same order of magnitude as the one

reported in Figure 1, is primarily driven by the low social preference for redistribution – i.e., g(θ) is close

to one. Increasing g(θ) to 1.3 would more than halve the tax rate response to price changes.

45This mechanism is standard: high marginal tax rates at the bottom are paid by all agents earning higher levels of income,
without distorting their marginal incentives to work, and all revenue is rebated to the lower-income households through the
intercept of the tax schedule.

46See Appendix A.2.2 for the derivation.
47Hendren (2020) reports that Pareto weights at the bottom of the distribution are between 1.1 and 1.2 depending on the

elasticity ε. Note that the Pareto weight can be recovered from the optimal tax formula of Proposition 1, setting α = 0,
d
dz

{
zζ̃T ′/ (1− T ′) f(z)

}
= − (1− g (z)) f (z).

48The relative price index is measured in terms of budget shares rather than marginal budget shares. Figure A2.B reports
changes in prices indices across the income distribution, relative to average.

49Plugging into the formula above, the calculation is: dT ′(θ) = − 1.1
1.1−1

· 0.27 · (1− 0.27) · 3.3 = −7.2.
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At the top of the income distribution, the response of the tax rate is given by the same formula at θ̄:

dT ′(θ̄) = − g(θ̄)

g(θ̄)− 1
T ′ (1− T ′)︸ ︷︷ ︸

Preferences for redistribution

(
dlnp

(
θ̄
)
− dlnp̄

)︸ ︷︷ ︸
Marginal Price Index

.

Here, the tax rate is T ′ = 40%, the Pareto weight is lower, with g(θ̄) = 0.65, and relative prices fall by

1.6% (Figure A2.B). As a result, the sensitivity of the tax rate is one order of magnitude lower: the tax

rate decreases by 0.7 percentage points. If g(θ̄) was closer to one (e.g., g(θ̄) = 0.9), the sensitivity would

be similar to that observed at the bottom.

In terms of welfare, we find in Appendix Figure A4 that households at the bottom are more affected

by the response of taxes to price shocks than by the price shocks themselves. Specifically, they would be

willing to sacrifice 35% of their income to avoid the tax change, compared to just 2%50 to avoid the price

change itself. This highlights that the regressive impact of the optimal tax adjustment can be an order

of magnitude larger than the direct effect of inflation inequality.51

Response to inflation inequality in scanner data. Using NielsenIQ scanner data, panel B of Figure

1 shows that it is important to measure changes in prices at a detailed level to draw the implications of

price changes for the optimal tax schedule. We repeat the previous exercise using the NielsenIQ Homescan

Consumer Panel data set instead of the CEX-CPI data. The NielsenIQ data set covers only fast-moving

consumer goods (about 15% of total expenditure and 40% of expenditures on goods), but it has the

advantage of being available at a much higher level of granularity than the product categories from the

CEX-CPI linked data set and allows for the measurement of changes in product variety. We use the

NielsenIQ data to illustrate the role of aggregation bias and product variety for the optimal tax policy

response to inflation inequality. Price changes and changes in product variety are measured from 2004 to

2015 at different levels of aggregation.

We first focus on price indices computed at different levels of aggregation, using products available

across consecutive years, and that do not account for changes in product variety. With the 994 most

detailed product categories, called “product modules”, we find that it is optimal for marginal tax rates

to fall by about 12 percentage points at the bottom of the income distribution in response to the price

changes observed between 2004 and 2015. With 109 larger product categories, called “product groups”,

the differences in inflation across the income distribution are attenuated: the fall in the tax schedule is

only about 7.5 percentage points at the bottom of the distribution. With the ten broad “departments”,

measured inflation inequality is much smaller and the fall in tax rates is under 2 percentage points. These

differences would be amplified further in general equilibrium, accounting for endogenous price changes

and changes in demand.

Furthermore, we introduce a correction for changes in product variety, using a CES price index as

50As the relative price of necessities fall, we find in our calculation that labor supply increases on average. This implies
that, at the initial tax rates, more revenue is collected by the government and this additional revenue is rebated to households.
As a result the cost of the price change for households at the bottom of the distribution (2%) is lower than the 3.3% observed
in the CEX (Figure A2.B).

51The willingness to pay to avoid the tax reform is large at the bottom of the distribution. The reason is that the intercept
of the tax schedule and therefore the income of households at the bottom of the distribution is small. Thus, a lower average
tax rate leads to a large fall in income for households at the bottom.
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Figure 2 Optimal Tax Schedule and Observed Price Shocks, Nonlinear Production Functions

A. σ = 0.6 B. σ = 2
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Notes: the IRS parameter is set to α = 0.3 and the labor supply elasticity to ε = 0.21. The CEX-CPI data set is used in both
panels to measure the price shocks, obtained by computing inflation rates from 2004 to 2015 across the income distribution.
The initial tax schedule is taken from Hendren (2020). The “exogenous price change” results, depicted in red, are obtained
by applying Proposition 2. The “endogenous price change” results, depicted in blue, follow from Proposition 4 and account
for all channels in Figure A1.

in Feenstra (1994) and Broda and Weinstein (2010). In the data, product variety expands faster in

product categories purchased by high-income households, which further reduces the price index faced by

high-skill agents. Consequently, the fall in optimal marginal tax rates is amplified. At the bottom of the

distribution, marginal tax rates fall by an additional 2.5 percentage points.52

Main results, non-linear production functions. We now turn to the case of non linear production

functions. We set α = 0.30 and consider the monopolistic case. Figure 2 presents the results. We report

the changes in the tax schedule in response to price shocks, depending on the value of σ and contrasting

the responses in partial and general equilibrium.

Using the first formula of Proposition 4, we compute the partial equilibrium response. This response

– shown in red and labeled “exogenous price change” in the figure – is independent of σ and only captures

Channels #1 and #2. The results are reported in red in the figure, with the label “exogenous price

change”. The pattern of the tax response is qualitatively similar to the case with linear production

(α = 0, shown on Figure 1), but quantitatively muted: marginal tax rates at the bottom fall by around

6pp, compared to 10pp in Figure 1. This muted response arises from the interaction between returns to

scale and the strength of redistribution preferences. Introducing α > 0 implies that stronger redistribution

preferences are required to rationalize the same observed tax schedule. To understand why, we have to

come back to Proposition 1: with α > 0, a wage subsidy is necessary to incentivize labor supply, exploiting

increasing returns to scale to reduce prices. This shifts the effective retention rate to (1 − α)(1 − T ′),

which is lower than in the linear case. As a result, even at the same observed tax rate, the planner is

implicitly favoring low-income households more under non-linear production. Empirically, we find that

this stronger redistribution motive is reflected in a higher Pareto weight at the bottom: g(θ) = 1.2 > 1.1,

52Online Appendix Figure A3 reports inflation inequality patterns in the NielsenIQ data, with and without changes in
product variety.
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which dampens the impact of price shocks on the optimal tax rate relative to the linear case. Thus,

under increasing returns, inflation inequality still generates regressive tax responses, but their magnitude

is partially offset by a stronger underlying redistributive motive.

Moreover, using the second part of Proposition 4, we find that the response of the tax schedule is

amplified in general equilibrium. The results are reported in blue in the figure, with the label “endogenous

price change”. With σ = 0.6 in Panel A, the planner reduces marginal tax rates by an additional two

percentage points at the bottom of the income distribution. With σ = 2 in Panel B, the amplification

is much larger and the optimal marginal tax rate is reduced to only 10% at the bottom of the income

distribution. To understand the magnitude of the amplification, recall from Proposition 4 that the general

equilibrium response is the partial equilibrium response scaled by (1− α (σ +Ω))−1. In our estimation,

Ω is small compared to σ, so this scaling term is well approximated by (1− ασ)−1 and is equal to 1.22

with σ = 0.6 and 2.5 with σ = 2, i.e the amplification ranges from about 20% to 150% depend on

the elasticity of substitution. Intuitively, in general equilibrium consumers reallocate their expenditures

toward the goods that become relatively cheaper, which amplifies the price changes through increasing

returns and further reduces the relative price of products with a high income elasticity. These endogenous

price changes create an additional motive for the social planner to redistribute toward higher-skill agents,

which leads to further price changes, and so on. These results show that the general equilibrium response

of prices plays a quantitatively important role for optimal tax policy.53

The role of non-linear social preferences. Next, Figure 3 quantifies the role of the curvature of

the social welfare function for the response of the tax schedule, illustrating the theoretical insights from

Proposition 3. While Figure 2 gives the results with linear social welfare weights, we now introduce

curvature by taking the inverse optimum weights at the observed tax schedule as our empirical social

welfare function. Specifically, with a linear social welfare function G(V, θ) = λ(θ)V , λ(θ) is chosen such

that the observed schedule is optimal. With the empirical social welfare function, G(V, θ) = G(V ), G is

directly chosen such that the observed schedule is optimal and is not allowed to depend on θ. Figure 3

reports the results with a linear social welfare function (in blue) and the empirical social welfare function

(in red). The degree of optimal redistribution toward the rich is slightly muted with the empirical

social welfare function, because the social value of redistributing income toward high-skill agents falls

endogenously as they get more transfers. With σ = 0.6, marginal tax rates increase by about 2.5pp at the

bottom of the income distribution with the empirical nonlinear social welfare function, compared with the

baseline case with linear Pareto weights. With σ = 2 in Panel B, optimal marginal tax rates are about

7pp larger than with linear Pareto weights, but the fall in optimal marginal tax rates induced by price

shocks remains sizable.

To further investigate the role of the curvature of the social welfare function, we specify the social

welfare function as G(V, θ) = λ(θ)V
1−γ

1−γ , with γ the CRRA coefficient and setting λ(θ) such that the

53In the Diamond-Mirrlees case, the partial equilibrium response are the same as in Figure 1. The amplification of the
response through general equilibrium effects is the same as in the monopolistic case presented here: the partial equilibrium
response is scaled by 1.22 with σ = 0.6 and 2.5 with σ = 2. A limitation of the results with endogenous price changes
presented in Figure 2 is that we use a single elasticity of substitution across all goods. The existing literature offers no widely
accepted estimates of heterogeneous elasticities of substitution across detailed product categories: developing such estimates
would be a fruitful avenue in future work. This limitation does not affect the results we obtain in partial equilibrium or when
production functions are linear.
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Figure 3 The Role of the Curvature of the Social Welfare Function

A. σ = 0.6 B. σ = 2

Notes: the IRS parameter is set to α = 0.3 and the labor supply elasticity to ε = 0.21. The CEX-CPI data set is used in both
panels to measure the price shocks, obtained by computing inflation rates from 2004 to 2015 across the income distribution.
The initial tax schedule is taken from Hendren (2020). Each panel reports the optimal tax schedule under different social
welfare function: the linear social welfare function from Figure 2, the empirical nonlinear social welfare function described
in the main text, and social welfare functions with a coefficient of relative risk aversion (CRRA) of 0.5 or 1. The dark blue
lines in the figure are the same as in Figure 2.

observed tax schedule is optimal.54 With stronger curvature, e.g. a social welfare function with a CRRA

coefficient of 0.5 or 1, redistribution toward the rich falls further. The result that marginal tax rates fall

in response to the price shocks is attenuated but not overturned: the marginal tax rates remain about one

to five percentage points below the observed tax schedule in the first six deciles, and gradually converge

to the observed schedule at higher percentiles.

Overall, these results show that non-linearities in social preferences for redistribution may play a

significant role for the optimal response of the tax schedule. With the empirical non-linear social welfare

function, the fall in taxes remains substantial for both values of σ.55 In unreported analyses, we find that

the planner continues to increase (rather than decrease) marginal tax rates in response to lower inflation

for high-income households even when the curvature of the social welfare function is much higher, e.g.

with a CRRA coefficient of 10.

5.3 Optimal Tax Schedule

We now analyze the quantitative importance of increasing returns to scale and non-homotheticities for

optimal tax rates and welfare across the skill distribution. We first document the impact of increasing

returns to scale in a homothetic model, then isolate the impact of non-homotheticities. Finally, we study

the response of the tax schedule to exogenous price shocks. By introducing parametric assumptions on

preferences, these analyses are complementary with the first-order approximations of Section 5.2, because

they characterize how our new channels affect the optimum when accounting for potential non-linearities.

Online Appendix D.4 provides a complete discussion of the solution algorithm.

54With γ = 1, we set G(V, θ) = λ(θ)log(V ).
55Online Appendix Figure A5 shows that similar results apply with alternative values of the labor supply elasticity.
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Figure 4 Returns to Scale and the Optimal Tax Schedule

Notes: This figure plots optimal marginal tax rates under constant returns to scale (CRS, α = 0) and increasing returns to
scale (IRS, α = 0.3). The social welfare function is logarithmic (CRRA=1) and the elasticity of labor supply is ε = 0.21.
With increasing returns, the “naive” correction uses the formula 1 − T ′

NAIV E(θ) = 1
1−α

(1− T ′
CRS(θ)). The optimal tax

schedule solves the full optimization problem, accounting for endogenous changes in the value of redistribution across the
income distribution.

5.3.1 The Interaction between Returns to Scale and Redistributive Motives

We first investigate the impact of returns to scale on the optimal tax schedule under homothetic utility,

i.e. with v (z∗,p) ≡ z∗

p . We consider a setting with a single sector, such that α can be interpreted as

“aggregate” returns to scale. With aggregate returns α, the “naive” interpretation of Proposition 1 is

that, relative to the CRS tax schedule, the planner should uniformly subsidize nominal wages 1− T ′ at a

constant rate 1/(1− α) throughout the distribution.

The solid blue line in Figure 4 shows the baseline optimal tax schedule under CRS and a logarithmic

social welfare function. The optimal marginal tax rates start around 68% at the bottom of the income

distribution, fall gradually to 58% at the 80th percentile, and then increase toward 68% at the top. The

dashed blue line depicts the tax schedule with the naive correction for increasing returns to scale, with

α = 0.30, whereby the net-of-tax wage is increased by 43% everywhere. This result already conveys that

it is important to take into account returns to scale for optimal tax design: the effect on optimal tax rates

is large.

The solid red line shows the optimal tax schedule under returns to scale with a logarithmic social

welfare function. The fall in marginal tax rates is smaller than with the naive correction. This result

shows that the curvature of the social welfare function plays a quantitatively important role in determining

the correction for increasing returns to scale, i.e. there is an important interaction with redistributive

motives. It is optimal for the cost of the work subsidy to be predominantly paid by high-skill agents,

hence marginal tax rates do not fall as much as with the naive correction. In Appendix Figure A6, we

show that the interaction remains quantitatively large with other parameter values for the labor supply

elasticity and the CRRA coefficient of the social welfare function.

By contrast, with linear Pareto welfare weights, set to match welfare weights at the CRS optimum,
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the “naive” correction is correct. To isolate the role of non-homotheticities independently of the curvature

of the social welfare function, we take the specification with Pareto weights as our baseline in the next

subsections. The Pareto weights are set as λ(θ) ≡ (Uoptim(θ))−σ̃, where Uoptim(θ) is the solution of the

optimal taxation problem with homothetic utility, constant returns to scale (α = 0), and the CRRA

parameter σ̃ for the social welfare function.

5.3.2 The Role of Non-Homotheticities

We now turn to a specification with non-homothetic utility, using non-homothetic CES (nhCES) prefer-

ences as in Hanoch (1975), Matsuyama (2019), and Comin et al. (2021).

Parametric assumptions on non-homothetic preferences. The indirect utility function v (z∗,p)

is given by v ≡ v (z∗,p) ≡ F (Q), where Q is the consumption vector of the agent over the set of products

i ∈ I. Indirect utility v is implicitly defined by:∑
i∈I

(Ωiv
εi)

1
σ Q

σ−1
σ

i = 1.

NhCES preferences have convenient features, in particular
∂ log(Qi/Qj)

∂ log(v) = (εi − εj) and
∂ log(Qi/Qj)
∂ log(pj/pi)

=

σ ∀i, j ∈ I. This tractable specification allows us to separately examine the impact on the tax schedule

of the “utility elasticities” {ε}i∈I , which govern non-homothetic spending patterns, and the elasticity of

substitution σ.

For tractability, in our calibration we consider two products, labeled “high quality” and “low quality”

products. In line with evidence on the substitutability between products within the same detailed product

category (Broda and Weinstein (2006), Broda and Weinstein (2010), DellaVigna and Gentzkow (2019),

and Handbury (2019)), we set σ = 2. We then specify the elasticities {ε}H,L to match the dissimilarity

index of consumption shares observed across the income distribution in the Consumer Expenditure Survey

in 2014. We compute the dissimilarity index at the level of the product categories available in the CEX

interview files, called universal classification codes (UCC). We focus on 2014 as the data on the observed

tax schedule from Hendren (2020) is available for that year. We obtain εL = −7 and εH = −1.5, implying

that low-income households have a large marginal propensity to spend on the low-quality goods.

Main results. Figure 5 characterizes the impact of non-homotheticities in our baseline specification

relative to the homothetic case, with α = 0.3 and Pareto weights from the logarithmic social welfare

function. Panels A and B show the effect of introducing non-homotheticities on optimal marginal tax rates.

Due to non-homotheticities, marginal tax rates increase over the full range of the income distribution.

The increase is larger at the bottom of the income distribution, with an increase in marginal tax rates

of about 6pp for levels of earned income below $20,000. The increase is about 2pp at an income level of

$100,000, and then gradually decreases, reaching levels close to zero above $300,000. Non-homoheticities

thus have a significant quantitative impact on optimal marginal tax rates.

Panels C through E of Figure 5 investigate the mechanism explaining the change in marginal tax

rates, which operates through the change in equilibrium prices and in the marginal utility of redistribution

across the skill distribution. Panel C reports the equilibrium prices, normalized to one at the observed
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Figure 5 The Response of the Optimal Tax Schedule to Non-Homotheticities
(α = 0.3, εz = 0.21, Pareto weights from SWF CRRA=1)
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30



tax schedule. In the homothetic specification with increasing returns, the price index increases by about

3.6% at the optimal tax schedule, because preferences for redistribution induce higher taxes than at

the observed schedule, which reduces labor supply and market size and thus drives an increase in the

price. With non-homotheticities, prices of the high-quality and low-quality products diverge: the price

of the high-quality good increases by 14%, while the low-quality product becomes 10% cheaper. Indeed,

additional redistribution (relative to the observed schedule) leads to an increase in the relative market size

of the product which has a higher marginal propensity to consume from low-income households, i.e. the

low-quality product in our specification. This result shows that the response of the optimal tax schedule

to non-homotheticities lead to large endogenous price changes in equilibrium.

Panel D shows that the induced change in the marginal utility of disposable income across agents

is substantial. While under homothetic utility the marginal utility is about 0.965 (= 1/p) throughout

the distribution, with non-homotheticities the marginal utility is 0.99 at the bottom, falls gradually to

0.85 around $150,000, and then increases slightly. The fall in marginal utility is largest for the agents

with the highest marginal propensity to consume on the high-quality good, which in equilibrium occurs

for earned income levels around $150,000 in our simulation. Panel E combines each agent’s marginal

utility of disposable income with Pareto weights and shows a steeper decline in welfare weights across the

distribution with the non-homothetic specification, because of the price effects.

Finally, panel F summarizes the willingness to pay of agents for the optimal tax schedule under non-

homothetic preferences, relative to the optimal schedule under homothetic preferences.56 The equivalent

variation is close to 15% in the bottom decile of the income distribution and decreases monotonically

throughout the distribution, turning negative in the seventh income decile. In the top decile, the welfare

loss from the new schedule, and its induced price effects, is about 9%. These estimates show that

adjusting the tax schedule for non-homotheticities generates substantial distributional effects, with large

welfare gains at the bottom of the distribution. Although panels A and B depicted an increase in marginal

tax rates at the bottom of the distribution, overall the change in the tax schedule benefits low-income

households more. Indeed, setting higher marginal tax rates at the bottom of the income distribution

raises the overall amount of redistribution in a more efficient way than increasing marginal tax rates at

the top, and the induced price effects benefit agents with a high average spending share on the low-quality

product.

Thus, the baseline simulation shows that non-homotheticities can have meaningful quantitative im-

plications for optimal taxation. The results account for all feedback loops between the desirability of

redistributing more and the induced price changes in general equilibrium (Proposition 4). As the rela-

tive price of the low-quality product decreases, it is optimal to redistribute more to those with a higher

marginal propensity to consume, which induces further tax changes and changes in labor supply, etc.

The strength of these feedback loops depend on the parameters governing increasing returns and social

preferences for redistribution, which we turn to next.

56We study the equivalent variation defined by:

ṽ (z∗H(θ) + EV (θ),pH)− ψ

(
zH(θ)

θ

)
= uNH(θ),

where H denotes the equilibrium under the optimal tax schedule with homothetic preferences, while NH corresponds to the
equilibrium with non-homothetic preferences.
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Sensitivity to increasing returns. Figure 6 reports the simulation results with larger increasing

returns, setting α = 0.4, close to the baseline estimate of 0.42 in Jaravel (2019). The results and channels

described for the baseline specification are all amplified by the larger increasing returns. Optimal marginal

tax rates increase by 11.5 percentage points at the bottom of the income distribution (panel B). The price

of the high quality good increases by 22%, while the price of the low-quality good falls by 18% (panel C).

The new tax schedule and the induced price effects create welfare gains of 35% at the bottom of the skill

distribution, and welfare losses of 16% at the top (panel F).

Sensitivity to preferences for redistribution. With α = 0.30, Figure 7 investigates the effects of

nonhomotheticities when preferences for redistribution are weaker. The Pareto weights are taken from

the optimal schedule with constant returns to scale and a social welfare function with a CRRA coefficient

of 0.5, rather than 1 as previously.

With this specification, the impact of non-homotheticities on the optimal tax schedule is muted.

The marginal tax rate increases by 3.75pp at the bottom of the distribution (panel B), the price of the

high quality product increases by about 3.75%, while the price of the low-quality product falls by about

3.5% (panel C). The willingness to pay for the tax schedule accounting for non-homotheticities remains

meaningful, especially at the bottom of the income distribution, with a welfare gain of 12% in the bottom

decile and a welfare loss of about 3% in the top decile (panel F).

These results illustrate the interplay between social preferences for redistribution and endogenous

prices. A weaker taste for redistribution endogenously leads to smaller changes in market size, hence

smaller price changes in equilibrium and a smaller adjustment to optimal marginal tax rates.

The impact of exogenous price shocks. Finally, we analyze how price shocks (e.g., from produc-

tivity shocks) affect the optimal tax schedule. We already characterized this response using a first-order

approximation in Section 5.2. In Online Appendix B.1, we present complementary results with no approx-

imation, accounting for feedback loops created by large price changes. We again find that exogenous price

shocks can have a large impact on the optimal tax schedule, and that there are important amplification

effects through increasing returns and the endogenous social value of redistribution.

Specifically, we consider an exogenous 5% change in the relative price of the high-quality and low-

quality bundles. We find that this price shock leads to a fall in marginal tax rates of 3.25 percentage

points at the bottom of the income distribution. The equivalent variation, capturing the willingness to

pay of agents for the revised optimal tax schedule, ranges from -6% at the bottom to +9% at the top of

the income distribution. Finally, in equilibrium the relative price of the high-quality bundle falls by 13%,

more than twice the exogenous relative price shock. We thus find that the amplification effects and their

welfare implications are sizable.

5.4 Extension: The Response of the Optimal Tax Schedule to Exogenous Shifts in

the Skill Distribution

The previous section shows that the optimal tax schedule is sensitive to non-homotheticities because

redistribution induces changes in relative prices and hence in the value of further redistribution. We now

present an extension analyzing shifts in the income distribution. Specifically, using the comparative statics
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Figure 6 Higher Returns to Scale Magnify the Impact of Non-Homotheticities
(α = 0.4, εz = 0.21, Pareto weights from SWF CRRA=1)

A. Optimal Non-Homothetic vs. Homothetic MTRs
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Figure 7 Lower Social Preferences for Redistribution Reduce the Impact of Non-Homotheticities
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approach from Section 5.2, in Online Appendix B.2 we characterize quantitatively the optimal response

of the tax schedule to exogenous shifts in the income distribution, accounting for the endogenous response

of prices.

We first consider the direct, partial equilibrium response to the change in the skill distribution, with

fixed prices. In this case, the rise in inequality in the United States in recent years makes it optimal to

increase redistribution. Because of the shifts in the skill distribution, there is relatively more mass at the

top and bottom of the skill distribution, hence the distortionary cost of taxation is higher in this range,

while it is reduced in the middle of the distribution. To increase redistribution efficiently, it is therefore

optimal to raise marginal tax rates especially in the middle of the income distribution.

Furthermore, general equilibrium effects are at play through prices. The direct effects on prices of the

shifts in inequality is amplified through income and substitution effects, as well as changes in optimal tax

rates. These effects tend to reduce optimal tax rates, because the observed shift in the income distribution

lowers the price of products with a higher income elasticity. Because higher-income agents have a higher

marginal propensity to spend on these goods, it is optimal to redistribute more toward them by lowering

marginal tax rates, through the same channels as in Proposition 2.

Quantitatively, we find that the direct price effects, which imply more redistribution toward higher-

skill agents, more than offset the motive for increased redistribution toward low-skill agents from the

shift in the skill distribution. Taking into account all effects, the optimal tax schedule becomes less

redistributive. These results show that it is important to jointly study shifts in the skill distribution and

price shocks.

6 Conclusion

In this paper, we have shown that optimal commodity and income taxation is sensitive to exogenous price

shocks, the elasticity of prices to market size, and non-homothetic preferences. We provided an explicit

analytical characterization of the response of the optimal tax schedule to price shocks, in both partial and

general equilibrium. Using simulations based on observed spending patterns and the empirical elasticity

of prices to market size, we found that these channels have a sizable quantitative impact on optimal

marginal tax rates and welfare across the skill distribution.

Our analysis was motivated by the fact that observed price changes are heterogeneous across product

categories and across the income distribution, and that empirically prices are endogenous to market size.

Going forward, our framework could be used to study the response of optimal taxation to a variety of

supply shocks that could affect prices, for example due to changes in technology, trade, immigration, or

market concentration. Although we considered a closed economy, we conjecture that the mechanisms we

highlighted might become even richer in a model with trade. Changes in domestic demand can be even

more important in an open economy than in a closed economy (Matsuyama (2019)) because they have

an impact on the equilibrium patterns of specialization, which in turn have an impact on the direction of

productivity growth through market size effects. Analyzing optimal taxation in an open economy model

with non-homothetic preferences and endogenous prices is thus a promising direction for future research.

Another interesting avenue for future work would be to estimate heterogeneity in returns to scale across

sectors, which we have abstracted from in our quantitative analysis, and the consequences for the optimal
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tax schedule.
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A Proofs

In this section, we provide proofs for the theoretical results of Sections 3 and 4. We also derive the

comparative statics formulas that underpin the quantitative results of Section 5.2, with many sectors.

Additional results – including the derivation of optimal tax formulas, comparative statics formulas, and

their qualitative characterization under general household preferences and a general specification of the

supply side – are collected in Appendix E, which also provides micro-foundations for the supply-side

specification.

In our quantitative analysis, we consider an economy with n sectors. Here, we formulate a simple exten-

sion of the model of Section 3, which allows us to generalize the results of Proposition 1, 2 and 4 and

provide the theoretical ground for the quantitative results of Section 5.2.

The economy has n sectors indexed by k. There is a mass 1 of households with different productiv-

ity types θ distributed according to π(θ).

Households. Households’ preferences over goods and hours worked z/θ are given by:

u(c1, ..., cn)−
1

1 + 1
ε

(z
θ

)1+ 1
ε
,

with u concave, increasing and C3, and ε ≤ 1. Given separability of preferences between consumption

and labor, the household problem, under consumer prices q = {q1, ..., qn} and the income tax schedule T,

can be written as:

V (θ;T,q) = sup
z,z∗

v (z∗,q)− 1

1 + 1
ε

(z
θ

)1+ 1
ε
,

such thatz∗ = z − T (z)

v (z∗,q) = sup
c
u(c1, ..., cN ), q · c = z∗.

The consumption problem on the third line defines an indirect utility of consumption v (z∗,q) and a

Marshallian demand function ck (z
∗,q) . Since u is concave and C3, the implicit function theorem directly

shows that v and ck are C2. The labor supply function is z (θ;T,q) and post tax income is z∗ (θ;T,q) =

z (θ;T,q)− T (z (θ;T,q)).

Notations. For individual consumption, we denote ek (z
∗,q) = qkck (z

∗,q) and sk (z
∗,q) = ek (z

∗,q) /

z∗ the expenditure on good k and the budget share of k, respectively. ∂z∗ek (z
∗,q) is the marginal

propensity to spend on good k.

For aggregate consumption, we denote Ck =
∫
ck (z

∗ (θ;T,q) ,q)π (θ) dθ, Ek = qkCk and s̄k = Ek/∫
z∗ (θ;T,q)π (θ) dθ, aggregate demand for good k, aggregate spending on k, and the aggregate share

of k in total expenditure. ∂z∗Ek =
∫
∂z∗ek (z

∗ (θ;T,q) ,q)π (θ) dθ is the average marginal propen-

sity to spend on k. Finally, we denote the matrix of compensated cross price elasticities as Sjk =
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qk
∫
(∂qkcj (z

∗ (θ;T,q) ,q) + ∂z∗cj (z
∗ (θ;T,q) ,q) ck (z

∗ (θ;T,q) ,q))π (θ) dθ/Cj .

For individual labor supply, as in the main text, we define ζ ≡ ε/
(
1− ε∂ln(z)ln (vz∗)

)
, the compen-

sated labor supply elasticity. ζ̃ is the compensated labor supply elasticity corrected for non-linearities in

the budget constraint: ζ̃ = ζ/(1+ zζT ′′/(1− T ′)). Similarly, η = ζ∂ln(z)log (vz∗) is the income effect with

a linear budget constraint and η̃ the corrected income effect.

Firms. We adopt the same supply-side specification as in the main text. In each sector, goods are

produced using labor as the sole input. The cost of producing Ck units of good k is χk (Ck, ξk) and the

price of k is given by ϕk (Ck, ξk), where ξk is an exogenous supply shifter. We consider two cases: in the

competitive case, we have ϕk (Ck, ξk) = ∂Ck
χk (Ck, ξk); in the monopolistic case, we have χk (Ck, ξk) =

Ckϕk (Ck, ξk). We assume, as in the main text, that the elasticity of price with respect to market size,

α = −Ck∂Ck
ϕk (Ck, ξk) /ϕk (Ck, ξk), is constant, equal across sectors and independent from Ck and ξk.

Planning Problem. The government maximizes a social welfare function
∫
G(V (θ), θ)π(θ)dθ with G

increasing and concave in V using a nonlinear income tax T, and commodity taxes, qk − pk, and a profit

tax. The planning problem can be written as:

W =sup
T,q

∫
G(V (θ), θ)π(θ)dθ

s.t V (θ) = sup
z
v (z − T (z) , q)− 1

1 + 1
ϵ

(z
θ

)1+ 1
ϵ

z (θ) = argmaxv (z − T (z) , q)− 1

1 + 1
ϵ

(z
θ

)1+ 1
ϵ

Ck =

∫
ck (z (θ)− T (z (θ)) , q)π(θ)dθ∫

T (z (θ))π(θ)dθ +

n∑
k=1

(qkCk − χk (Ck, ξk)) = 0,

where the consumption function solves c (z∗, q) = argmaxcu (c) s.t. q · c = z∗ and v (z∗, q) = u (c (z∗, q)).

Preferences of the household satisfy the single crossing property: (z/θ)ϵ
−1

/ (θ∂z∗v (z
∗, q)) is decreas-

ing in type θ. Therefore, the planning problem can be re-expressed as a direct mechanism where global

incentive compatibility constraints are replaced with a local constraint and a monotonicity condition on
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z (θ).

W = sup
V (θ),z(θ),q

∫
G(V (θ), θ)π(θ)dθ

s.t. V ′(θ) =
1

θ

(
z(θ)

θ

)1+ 1
ϵ

and z(θ) is non-decreasing (A1)

with V (θ) = v (z∗ (θ) , q)− 1

1 + 1
ϵ

(z
θ

)1+ 1
ϵ

Ck =

∫
ck(z

∗ (θ) , q)π(θ)dθ∫
(z (θ)− z∗ (θ))π(θ)dθ +

n∑
k=1

(qkCk − χk (Ck, ξk)) = 0

A.1 Proof of Proposition 1

In this subsection we prove Proposition 1 in an economy with N goods; the two-good economy of the

main text is included as a special case.

Proposition 1. Commodity taxes are not used at the optimum. The optimal non-linear income tax

schedule is characterized by:

T ′

1− T ′ = −tw +
1− tw

zζ̃f(z)

{
Ez′>z (1− g)− 1

1− tw
Ez′>z

((
tw +

T ′

1− T ′

)
η̃

)}
, (A2)

where tw = α in the monopolistic case and tw = 0 in the competitive case. When α = 0, we obtain the

standard formulas in both cases.

Proof: After integration by parts of the planning problem A1, the corresponding Lagrangian is:

L =

∫
G(V (θ), θ)π(θ)dθ −

∫ (
µ′(θ)V (θ) + µ(θ)

1

θ

(
z(θ)

θ

)1+ 1
ϵ

)
dθ

−λ

(∫
(z∗(θ)− z(θ))π(θ)dθ −

n∑
k=1

(qkCk − χk (Ck, ξk))

)
,

where µ(θ) are the multipliers on the incentive constraints and λ is the multiplier on the resource con-

straint.

We start with the FOC with respect to consumer prices qi. Denote ch(v,q) is the Hicksian demand

function at prices q for a given sub-utility v, we have:

dcj
dqi

∣∣∣∣
z,V

=
dcj
dqi

∣∣∣∣
v

=
∂chj
∂qi

dz∗

dqi

∣∣∣∣
z,V

=
dz∗

dqi

∣∣∣∣
v

= ci
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We therefore have, denoting ∂qiC
h
j =

∫
∂qic

h
j π(θ)dθ:

dL
dqi

= λ

Ci +
∑
j

(
qj − ∂Cjχj (Cj , ξj)

)
∂qiC

h
j − Ci

 ,

which gives for all i: ∑
j

(qjCj − (1− tw) pjCj)Sj,i = 0,

with tw = 0 in the competitive case (∂Cjχj (Cj , ξj) = pj), and tw = α in the monopolistic case (

∂Cjχj (Cj , ξj) = ϕj (Cj , ξj) + Cj∂Cjϕj (Cj , ξj) = (1− α) pj). Recall that S is the matrix of cross price

elasticities. Given that S is generically of rank N − 1 with left kernel qC, we have:

q ∝ p,

so choosing p = q is optimal.

Next, we derive the FOC associated with V . V (θ) impacts consumption and producer prices through

z∗(θ) with dz∗(θ)/dV (θ) = 1/vz∗ . We thus have:

0 = G′(V (θ), θ)π(θ)− µ′(θ)− λπ(θ)

vz∗

[
1−

∑
i

(qi − ∂Ciχi (Ci, ξi)) ∂z∗ci(θ)

]

= G′(V (θ), θ)π(θ)− µ′(θ)− λπ(θ)

vz∗

[
1−

∑
i

(qi − (1− tw) pi) ∂z∗ci(θ)

]

= G′(V (θ), θ)π(θ)− µ′(θ)− λπ(θ)

vz∗

[
1− tw

∑
i

qi ∂z∗ci(θ)

]

⇒µ′(θ)
vz∗

λ
= −

(
1− tw − G′(V (θ), θ)vz∗

λ

)
π(θ).

Finally, defining µ̃ = µ vz∗/λ, we have:

µ̃′(θ) + µ̃ ∂z∗MRS z′(θ) = −
(
1− tw − G′(V (θ), θ)vz∗

λ

)
π(θ),

with MRS = 1
θ

(
z(θ)
θ

)ϵ−1‘
/vz∗ the marginal rate of substitution.

Finally, the FOC associated with z, using the same steps as above to derive the response of consumption

and prices, is:

µ̃ ∂θMRS = π(θ)((1− tw)MRS − 1).

Since MRS = 1−T ′(z(θ)), and zζ̃∂θMRS = −z′(θ)(1−T ′(z(θ))), we therefore have, denoting f(z(θ)) =
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π(θ)/z′(θ):

µ̃(θ) = f(z)zζ̃

(
T ′

1− T ′ + tw

)
.

Finally, using −zζ̃ ∂z∗MRS = η̃, we get:

f(z)zζ̃

(
T ′

1− T ′ + tw

)
+

∫ z(θ̄)

z(θ)
η̃

(
T ′

1− T ′ + tw

)
f(z)dz =

∫ z(θ̄)

z(θ)

(
1− tw − G′vz∗

λ

)
f(z)dz

Using g = G′vz∗/((1− tw)λ), we obtain the formula of Proposition 1.2

A.2 Proofs for Section 4: Propositions 2, 3, and 4, and Corollary 1

In this section, we provide proofs for our comparative statics results of Section 4. In the last subsection,

we provide the comparative statics formulas underpinning the results of Section 5.2.

A.2.1 Intermediary Lemma

To streamline the presentation of the proofs, we first present an intermediary lemma valid in an n−sector

economy. For an exogenous supply shock ξk, we derive the change in welfare for agent θ, dV (θ) /

dξk,expressed in terms of the resulting equilibrium price changes, dpl/dξk. Much of the algebra required

for Propositions 1, 2 and 3, as well as Corollary 1 is the same. The purpose of the lemma is to consolidate

these repetitive derivations into a unified result.

As in the main text, we assume that there are no income effects of labor supply at initial prices (as-

sumption A3). At initial prices p = {p1, ..., pN}, we have ∂z∗v (z
∗,p) = 1,∀z∗. Recall that the utility

of the agent can be rewritten U(c1, ..., cn, z, θ) = Ψ (u (c1, ..., cn)) −
(
1 + ϵ−1

)−1
(z/θ)1+ϵ−1

, where the

function Ψ can be used to calibrate the income effect of labor supply at initial prices: here we choose

Ψ′ (v (z∗,p)) = ∂z∗v (z
∗,p)−1. The comparative statics formulas for a general Ψ are relegated to Appendix

E.

Lemma A1. Under assumption A3, the change in welfare for agent θ, dV (θ) /dξk, in response to

an exogenous supply shift dξk, conditional on the change of prices dpl/dξk, is given by:

ϵ

(1 + ϵ)2
θπ(θ)

(1− T ′)2
θ

z(θ)

d

dθ

{
dV

dξk

}
+ (1− tw)

∫ θ̄

θ
g

(
γ
(
θ′
) dV

dξk
−
∫ θ̄

θ
gγ
(
θ′
) dV

dξk
πdθ′

)
πdθ′ = −

ϵ

1 + ϵ

θπ(θ)

1− T ′

n∑
l=1

(τl (θ) + ∂z∗El)
1

pl

dpl

dξk
,

(1− tw)

∫ θ̄

θ
g
dV

dξk
πdθ = −∂ξkχk (ξk, Ck) ,
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where γ (θ), τl (θ) are given by:

γ (θ) ≡ −G
′′ (V (θ) , θ)

G′ (V (θ) , θ)
,

τl (θ) ≡ (1− tw)
(
1− T ′)(1 + ϵ

ϵ

1

θπ(θ)

∫ θ̄

θ
(∂z∗el − ∂z∗El)πdθ

′ + (∂z∗el − ∂z∗El)

)
.

Proof: Recall from the proof of Proposition 1 that pl = ql. In addition, the optimal tax system is

determined by the following envelope conditions and first order condition:

dµ̂(θ)

dθ
= −

(
1− tw

vz∗ (z∗ (θ) ,p)
− G′(V (θ), θ)

λ

)
π(θ)

dV (θ)

dθ
=

1

θ

(
z(θ)

θ

)1+ 1
ϵ

µ̂(θ)

(
1 +

1

ϵ

)
1

θ2

(
z(θ)

θ

) 1
ϵ

= π(θ)

(
1− (1− tw)

1

vz∗ (z∗ (θ) ,p)

1

θ

(
z(θ)

θ

) 1
ϵ

)
, (A3)

with µ̂(θ) = µ(θ)/λ and µ̂(θ) = µ̂(θ̄) = 0. Finally, the budget constraint needs to be satisfied:∫
(z (θ)− z∗ (θ))π (θ) dθ +

n∑
l=1

(plCl − χl (ξl, Cl)) = 0.

We first start by differentiating the marginal value of income vz∗ (z
∗ (θ) ,p):

d

dξk
{vz∗ (z∗ (θ) ,p)} = vz∗z∗ (z

∗ (θ) ,p)
dz∗

dξk
+

n∑
l=1

∂

∂pl
{vz∗ (z∗ (θ) ,p)}

dpl
dξk

= vz∗z∗ (z
∗ (θ) ,p)

dz∗

dξk
+

n∑
l=1

∂

∂z∗
{vpl (z

∗ (θ) ,p)} dpl
dξk

= vz∗z∗ (z
∗ (θ) ,p)

dz∗

dξk
−

n∑
l=1

∂

∂z∗
{vz∗ (z∗ (θ) ,p) cl}

dpl
dξk

= vz∗z∗ (z
∗ (θ) ,p)

(
dz∗

dξk
−

n∑
l=1

cl
dpl
dξk

)
− vz∗ (z

∗ (θ) ,p)

N∑
l=1

∂z∗cl
dpl
dξk

= −vz∗ (z∗ (θ) ,p)
n∑

l=1

∂z∗cl
dpl
dξk

,

where the second line uses Schwarz’s identity, the third Roy’s identity, and the fifth uses vz∗z∗ (z
∗ (θ) ,p) =

0. Using the fact that tw is constant (equal to α in the monopolistic case, equal to 0 in the competitive

case), differentiating the first equation of system A3, we obtain:

d

dθ

{
dµ̂(θ)

dξk

}
= −

(
1− tw

vz∗ (z∗ (θ) ,p)

n∑
l=1

∂z∗cl
dpl
dξk

+
G′(V (θ), θ)

λ

(
γ (θ)

dV (θ)

dξk
+

1

λ

dλ

dξk

))
π(θ),
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with γ (θ) = −G′′(V (θ), θ)/G′(V (θ), θ). Using the fact that dξk µ̂(θ) = dξk µ̂(θ̄) = 0, we have in addition:

1

λ

dλ

dξk
= −

∫ (
1− tw

vz∗ (z∗ (θ) ,p)

n∑
l=1

∂z∗cl
dpl
dξk

+
G′(V (θ), θ)

λ
γ (θ)

dV (θ)

dξk

)
π(θ)dθ

= − (1− tw)

∫ ( n∑
l=1

∂z∗cl
dpl
dξk

+ gγ (θ)
dV (θ)

dξk

)
π(θ)dθ,

where the second line uses vz∗ (z
∗ (θ) ,p) = 1 and G′(V (θ), θ)//λ = (1− tw) g (by definition of g). We

therefore have:

d

dθ

{
dµ̂(θ)

dξk

}
= − (1− tw)

(
n∑

l=1

(
∂z∗cl − g (θ)

∫
∂z∗clπ(θ

′)dθ′
)
dpl
dξk

+ g (θ)

(
γ (θ)

dV (θ)

dξk
−
∫
gγ
(
θ′
) dV (θ′)

dξk
π(θ′)dθ′

))
π(θ).

Differentiating the second equation of system A3, we obtain:

d

dθ

{
dV (θ)

dξk

}
=

(
1 +

1

ϵ

)
1

θ

(
z(θ)

θ

)1+ 1
ϵ 1

z (θ)

dz(θ)

dξk
.

Differentiating the last equation of system A3, we obtain:

dµ̂(θ)

dξk
= − ϵ

1 + ϵ
θπ(θ)

(
(1− tw)

n∑
l=1

∂z∗cl
dpl
dξk

+
1

ϵ
θ

(
θ

z(θ)

) 1
ϵ 1

z (θ)

dz(θ)

dξk

)

= − ϵ

1 + ϵ
θπ(θ)

(
(1− tw)

n∑
l=1

∂z∗cl
dpl
dξk

+
1

1 + ϵ
θ2
(

θ

z(θ)

)1+2 1
ϵ d

dθ

{
dV (θ)

dξk

})
.

Putting everything together, we obtain:

ϵ

1 + ϵ
θ0π(θ0)

(
(1− tw)

n∑
l=1

∂z∗el
1

pl

dpl
dξk

+
1

1 + ϵ
θ20

(
θ0
z(θ0)

)1+2 1
ϵ d

dθ

{
dV (θ0)

dξk

})

= − (1− tw)

∫ θ̄

θ0

(
n∑

l=1

(∂z∗el − g (θ) ∂z∗El)
1

pl

dpl
dξk

+ g (θ)

(
γ (θ)

dV (θ)

dξk
−
∫
gγ
(
θ′
) dV (θ′)

dξk
π(θ′)dθ′

))
π(θ)dθ.

Using the optimality of the initial schedule, we have:

ϵ

1 + ϵ
θ0π(θ0)

1

1 + ϵ
θ20

(
θ0

z(θ0)

)1+2 1
ϵ d

dθ

{
dV (θ0)

dξk

}
= − (1− tw)

∫ θ̄

θ0

g (θ)

(
γ (θ)

dV (θ)

dξk
−
∫

gγ
(
θ′
) dV (θ′)

dξk
π(θ′)dθ′

)
π(θ)dθ

− (1− tw)
n∑

l=1

(∫ θ̄

θ0

((∂z∗el − g (θ) ∂z∗El))π(θ)dθ +
ϵ

1 + ϵ
θ0π(θ0)∂z∗el

)
1

pl

dpl

dξk

= − (1− tw)

∫ θ̄

θ0

g (θ)

(
γ (θ)

dV (θ)

dξk
−
∫

gγ
(
θ′
) dV (θ′)

dξk
π(θ′)dθ′

)
π(θ)dθ

− (1− tw)
n∑

l=1

(∫ θ̄

θ0

((∂z∗el − ∂z∗El))π(θ)dθ +
ϵ

1 + ϵ
θ0π(θ0) (∂z∗el − ∂z∗El)

)
1

pl

dpl

dξk

−
ϵ

1 + ϵ
θ0π(θ0)

1

1− T ′ (z (θ0))

n∑
l=1

∂z∗El
1

pl

dpl

dξk

The last line uses the fact that the initial schedule is optimal, so that:

(1− tw)

∫ θ̄

θ0

g (θ)π(θ)dθ = (1− tw)

∫ θ̄

θ0

π(θ)dθ − ϵ

1 + ϵ
θ0π(θ0)

(
1

1− T ′ (z (θ0))
− (1− tw)

)
.
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Using the definition of τl, we therefore have

ϵ

(1 + ϵ)2
θ0π(θ0)

(1− T ′ (z (θ0)))
2

(
θ0
z(θ0)

)
d

dθ

{
dV (θ0)

dξk

}
= − (1− tw)

∫ θ̄

θ0

g (θ)

(
γ (θ)

dV (θ)

dξk
−
∫
gγ
(
θ′
) dV (θ′)

dξk
π(θ′)dθ′

)
π(θ)dθ

− ϵ

1 + ϵ

θ0π(θ0)

1− T ′ (z (θ0))

n∑
l=1

(τl (θ0) + ∂z∗El)
1

pl

dpl
dξk

,

which proves the first formula of the Lemma.

Next, we differentiate the budget constraint:∫ θ̄

θ

(
dz(θ)

dξk
− dz∗(θ)

dξk

)
π (θ) dθ +

n∑
l=1

(pl − ∂Cl
χl (ξl, Cl))

dCl

dξk
+

n∑
l=1

dpl
dξk

Cl − ∂ξkχk (ξk, Ck) = 0.

Recall that we have Cl =
∫
cl (z

∗ (θ) ,p)π (θ) dθ and that ch (v,p) is the Hicksian demand function. Using

the standard Slutsky decomposition, we have:

dCl

dξk
=

∫ θ̄

θ
∂z∗cl (θ)

(
dz∗(θ)

dξk
−

n∑
m=1

cm (θ)
dpm
dξk

)
π (θ) dθ +

n∑
m=1

∫ θ̄

θ
∂pmc

h
l (θ)π (θ) dθ

dpm
dξk

.

Using pl − ∂Cl
χl (ξl, Cl) = twpl,

∑N
l=1 pl∂pmc

h
l (θ) = 0 and

∑N
l=1 pl∂z∗cl (θ) = 1, we obtain:

∫ θ̄

θ

(
dz(θ)

dξk
− (1− tw)

(
dz∗(θ)

dξk
−

N∑
l=1

cl (θ)
dpl
dξk

))
π (θ) dθ − ∂ξkχk (ξk, Ck) = 0.

Using Roy’s identity and the envelope condition, we have

dV (θ)

dξk
= vz∗

(
dz∗(θ)

dξk
−

n∑
l=1

cl (θ)
dpl
dξk

−
(
1− T ′) dz(θ)

dξk

)
,

d

dθ

{
dV (θ)

dξk

}
=

(
1 +

1

ϵ

)
1

θ

(
1− T ′ (z(θ))

) dz(θ)
dξk

,

so we can re-express the government budget constraint in terms of household’s welfare:∫ θ̄

θ

((
1

1− T ′ − (1− tw)

)
ϵ

1 + ϵ
θ
d

dθ

{
dV (θ)

dξk

}
− (1− tw)

1

vz∗

dV (θ)

dξk

)
π (θ) dθ − ∂ξkχk (ξk, Ck) = 0.

Finally, using the optimality of the initial schedule we have∫ θ̄

θ

((
1

1− T ′ − (1− tw)

)
ϵ

1 + ϵ
θ
d

dθ

{
dV (θ)

dξk

}
− (1− tw)

1

vz∗

dV (θ)

dξk

)
π (θ) dθ = − (1− tw)

∫ θ̄

θ

g (θ)
dV (θ)

dξk
π (θ) dθ,

which implies

(1− tw)

∫ θ̄

θ
g (θ)

dV (θ)

dξk
π (θ) dθ = −∂ξkχk (ξk, Ck) ,

which proves the lemma.□
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A.2.2 Proofs for Section 4.2

Here, we provide a proof of our results when the production function is linear. In that case, prices are fully
exogenous pk = ϕk (ξk) and χk = ϕk (ξk)Ck. Re-normalizing the shock (ξ̃k = ϕk (ξk)), we can directly
re-write the system of Lemma A1 as:

ϵ

(1 + ϵ)2
θπ(θ)

(1− T ′)2
θ

z(θ)

d

dθ

{
dV

dlnpk

}
+

∫ θ̄

θ

g

(
γ
(
θ′
) dV

dlnpk
−
∫ θ̄

θ

gγ
(
θ′
) dV

dlnpk
πdθ′

)
πdθ′ = − ϵ

1 + ϵ

θπ(θ)

1− T ′ (τk (θ) + ∂z∗Ek) ,∫ θ̄

θ

g
dV

dlnpk
πdθ = −pkCk.

As in the main text, we define an increase in the relative price of the necessity, keeping the average price

level constant, as dlnp̄l, such that dlnpl = s̄hdlnp̄l and dlnph = −s̄ldlnp̄l. We also define a homogeneous

increase in price dlnp̄, such that dlnpl = dlnph = dlnp̄. In a two-good economy, a relative increase in the

price of necessity and an homogeneous increase in price summarizes all the price changes.

Linear Social Welfare Function (Proposition 2 and Corollary 1) We first provide the proof of

Proposition 2:

Proposition 2.

Under A3−A4, the response of the optimal tax rate at θ to an increase in the price of k when α = 0 is:

pkd

dpk

{
T ′

1− T ′

}
=

1

zζ̃f(z(θ))
Ez>z(θ) (∂z∗ek − ∂z∗Ek)−

T ′

1− T ′ (∂z∗ek − ∂z∗Ek) .

With homothetic preferences (∂z∗eh = sh), we have dpkT
′ = 0. With non-homothetic preferences, under

A1 the change in tax schedule in response to change in the price of the necessity (k = l) and luxury

(k = h) good satisfies :

pld

dpl

{
T ′

1− T ′

}
< 0 and

phd

dph

{
T ′

1− T ′

}
= −pld

dpl

{
T ′

1− T ′

}
> 0 ∀θ.

Proof: Under Assumption A.4, we have γ (θ) = 0 ∀θ (since G′′ (V, θ) = 0 when G (V, θ) = λθV ). We

therefore have, using Lemma A1:

ϵ

(1 + ϵ)2
θπ(θ)

(1− T ′)2
θ

z(θ)

d

dθ

{
dV

dlnpk

}
= − ϵ

1 + ϵ

θπ(θ)

1− T ′ (τk (θ) + ∂z∗Ek) .

In addition, we have from the envelope condition:

d

dθ

{
dV (θ)

dlnpk

}
=

(
1 +

1

ϵ

)
1

θ

(
1− T ′) dz(θ)

dlnpk
.

From the optimality of labor supply (1θ

(
z(θ)
θ

)ϵ−1

/vz∗ (z
∗ (θ) ,p) = 1− T ′), we have:

1

z

dz(θ)

dlnpk
= − ϵ

1− T ′
dT ′

dlnpk
− ϵ∂z∗ek.
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Plugging these expressions in our formula, we obtain:

ϵ

1 + ϵ

θπ(θ)

(1− T ′)

(
− 1

1− T ′
dT ′

dlnpk
− ∂z∗ek

)
= − ϵ

1 + ϵ

θπ(θ)

1− T ′ (τk (θ) + ∂z∗Ek)

pkd

dpk

{
T ′

1− T ′

}
=

1

1− T ′ (τk (θ)− (∂z∗ek − ∂z∗Ek)) .

Finally, using the definition of τk (θ) , we have:

pkd

dpk

{
T ′

1− T ′

}
=

(
1 + ϵ

ϵ

1

θπ(θ)

∫ θ̄

θ
(∂z∗el − ∂z∗El)πdθ

′ − T ′

1− T ′ (∂z∗el − ∂z∗El)

)

=
1

zζ̃f(z(θ))

∫ z(θ̄)

z(θ)
(∂z∗ek − ∂z∗Ek) f(z)dz −

T ′

1− T ′ (∂z∗ek − ∂z∗Ek) ,

which proves our formula. Since zζ̃f(z(θ)) ≥ 0, the expression has the same sign as F (z (θ)), defined

below:

F (z (θ)) ≡
∫ z(θ̄)

z(θ)
(∂z∗ek − ∂z∗Ek) f(z)dz − zζ̃f(z(θ))

T ′

1− T ′ (∂z∗ek − ∂z∗Ek) =∫ z(θ̄)

z(θ)
(∂z∗ek − ∂z∗Ek) f(z)dz − (∂z∗ek − ∂z∗Ek)

∫ z(θ̄)

z(θ)
(1− g) f(z)dz.

Inspecting the expression in the second line, we have F (z (θ)) = F
(
z
(
θ̄
))

= 0. Assume now that ∂z∗ek

is decreasing (k is a necessity good) and define θ∗ such that ∂z∗ek (z
∗ (θ∗) ,p) = ∂z∗Ek (note that since

z (θ)is increasing due to the single crossing property and dV/dθ > 0 from the envelope condition, z∗ (θ)is

increasing in θ). We have:

F ′ (z (θ)) = − (∂z∗ek − ∂z∗Ek) gf(z)−
(
1− T ′) ∂z∗z∗ek ∫ z(θ̄)

z(θ)
(1− g) f(z)dz.

For θ ≥ θ∗, we have ∂z∗ek < ∂z∗Ek and since ∂z∗z∗ek ≤ 0, we have F ′ (z (θ)) > 0 for θ ≥ θ∗

(
∫ z(θ̄)
z(θ) (1− g) f(z)dz ≥ 0, as g is non increasing. Since F

(
z
(
θ̄
))

= 0, this implies F (z (θ)) < 0 for

θ ≥ θ∗.

Note in addition that we can rewrite F (z (θ)) as:

F (z (θ)) = −
∫ z(θ)

z(θ)
(∂z∗ek − ∂z∗Ek) f(z)dz + (∂z∗ek − ∂z∗Ek)

∫ z(θ)

z(θ)
(1− g) f(z)dz.

For θ ≤ θ∗, we have ∂z∗ek − ∂z∗Ek > 0 and decreasing in θ, so that:

F (z (θ)) < − (∂z∗ek − ∂z∗Ek)

∫ z(θ)

z(θ)
f(z)dz + (∂z∗ek − ∂z∗Ek)

∫ z(θ)

z(θ)
(1− g) f(z)dz

= − (∂z∗ek − ∂z∗Ek)

∫ z(θ)

z(θ)
gf(z)dz < 0.

Thus, F (z (θ)) < 0 for θ < θ∗, which implies pld
dpl

{
T ′

1−T ′

}
< 0. By direct inspection, since ∂z∗el − ∂z∗El =

A11



− (∂z∗eh − ∂z∗Eh), we have phd
dph

{
T ′

1−T ′

}
= −pld

dpl

{
T ′

1−T ′

}
> 0. □

We now turn to our welfare analysis and provide a proof of Corollary 1. We also show that welfare

decreases after an homogeneous price increase and that the decrease in welfare does not depend on

consumption patterns. In particular the welfare decrease is the same when household have homothetic

or non-homothetic preferences. The result is intuitive: an homogeneous price increase is equivalent to

an homogeneous reduction in households’ real wage independently from their consumption preferences.

Households reduce their labor supply and, from Proposition 2, tax rates are left unchanged: the real

income of all households falls.

Corollary 1. For an increase in the relative price of necessities dlnp̄l, with dlnpl = s̄hdlnp̄l and

dlnph = −s̄ldlnp̄l, the compensating scheme dT (z (θ)) = − (sl − s̄l) z
∗ (θ) dlnp̄l is feasible but only opti-

mal when preferences are homothetic. With non-homothetic preferences, under A1−A4 we have dV (θ) /

dp̄l < 0 and dV
(
θ̄
)
/dp̄l > 0 ; dV (θ) /dp̄l is increasing in θ and E (gdV (θ) /dp̄l) = 0.

For an homogeneous increase in price, dlnp̄, such that dlnpl = dlnph = dlnp̄, we have dV (θ) /dp̄ is negative,

decreasing, and independent from consumption preferences.

Proof: Using the formula of lemma A1, we have that for an increase in the relative price of necessities,

the change in welfare satisfies:

ϵ

(1 + ϵ)2
θπ(θ)

(1− T ′)2
θ

z(θ)

d

dθ

{
dV

dlnp̄l

}
= − ϵ

1 + ϵ

θπ(θ)

1− T ′ (τl (θ) + ∂z∗El − s̄l) ,∫ θ̄

θ
g
dV

dlnp̄l
πdθ = 0,

where we used γ = 0 and dV (θ) /dp̄l = s̄hdV (θ) /dpl+ s̄ldV (θ) /dph. The second equation directly shows

that E (gdV (θ) /dp̄l) = 0. Since ∂z∗El ≤ s̄l, to show that dV (θ) /dp̄l is increasing it is enough to show

that τl (θ) is negative. We will then have dθ {dV (θ) /dp̄l} > 0, which implies, given E (gdV (θ) /dp̄l) = 0,

that dV (θ) /dp̄l < 0 and dV
(
θ̄
)
/dp̄l > 0.

Recall that we have:

τl (θ) =
(
1− T ′)(1 + ϵ

ϵ

1

θπ(θ)

∫ θ̄

θ
(∂z∗el − ∂z∗El)πdθ

′ + (∂z∗el − ∂z∗El)

)
.

Since (1− T ′) ≥ 0 and θπ(θ) ≥ 0, τl (θ) has the same sign as τ̃l (θ) =
∫ θ̄

θ
(∂z∗el − ∂z∗El)πdθ

′+ ϵ
1+ϵ

θπ(θ) (∂z∗el − ∂z∗El).

As in the proof of Proposition 2, define θ∗ such that ∂z∗el (z
∗ (θ∗) ,p) = ∂z∗El. For θ > θ∗, we have ∂z∗el <

∂z∗El, which implies τ̃l (θ) < 0. In addition, we have τ̃ ′l (θ) = −
(
1− ϵ

1+ϵ
θπ′(θ)
π(θ)

)
π(θ) (∂z∗el − ∂z∗El) +

(1− T ′) z′ (θ) ∂z∗z∗el < 0 for θ ≤ θ∗under A4. Indeed, ∂z∗el − ∂z∗El ≥ 0, ∂z∗z∗el ≤ 0 (and z′ (θ) ≥ 0 for

the tax schedule to be incentive compatible). Since τ̃l (θ) = 0 is decreasing on (θ, θ∗) and negative for

θ > θ∗, we have τ̃l (θ) negative everywhere, which implies dθ {dV (θ) /dp̄l} > 0.
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For an homogeneous price increase and simplifying the formulas from Lemma A1, we have:

d

dθ

{
dV

dlnp̄

}
= − (1 + ϵ)

(
1− T ′) z(θ)

θ∫ θ̄

θ
g
dV

dlnp̄
πdθ = −plCl − phCh = −

∫ θ̄

θ
z (θ)πdθ.

This implies that dV (θ) /dp̄ is decreasing and independent from consumption preferences. Next, we have:

d

dθ

{
dV

dlnp̄

}
= − (1 + ϵ)

(
1− T ′) z(θ)

θ

= −
(
1− T ′ + ϵzT ′′) z′ (θ)

⇒ dV (θ)

dlnp̄
=
dV (θ)

dlnp̄
−
(
z (θ)− (1 + ϵ)T (z (θ)) + ϵz (θ)T ′ (z (θ))

)
.

Finally, recall from the proof of Lemma A1 that we have:∫ θ̄

θ
g
dV

ddlnp̄
πdθ = −

∫ θ̄

θ

(
1

1− T ′
ϵ

1 + ϵ
θ
d

dθ

{
dV (θ)

dξk

}
− dV (θ)

dξk

)
π (θ) dθ

=

∫ θ̄

θ

(
ϵ
(
1− T ′) z(θ) + z (θ)

)
π (θ) dθ +

dV (θ)

dlnp̄

⇒ dV (θ)

dlnp̄
= −

∫ θ̄

θ
ϵ
(
1− T ′) z(θ)π (θ) dθ < 0.

The second line uses
∫ θ̄
θ T (z (θ))πdθ = 0. We therefore have dV (θ) /dp̄ < 0 and dV (θ) /dp̄decreasing,

which implies that dV (θ) /dp̄ is everywhere negative.□

Top and bottom tax rates. To conclude this section, we provide formulas for the top and bot-

tom tax rates that we use in our discussion of the quantitative results of Section 5.2. We assume that

the Pareto weights g are decreasing and denote g (θ) > 1 > g
(
θ̄
)
their limit at the bottom and top of

the distribution. Similarly, ∂z∗el (θ) > ∂z∗El > ∂z∗el
(
θ̄
)
are the marginal propensity to spend on the

necessity good at the bottom and top of the distribution. For an increase in the price of the necessity

good, our tax formula is:

pld

dpl

{
T ′

1− T ′

}
=

1 + ϵ

ϵ

1

θπ(θ)

∫ θ̄

θ
(∂z∗el − ∂z∗El)π(θ)dθ −

T ′

1− T ′ (∂z∗el − ∂z∗El) ,

=
T ′

1− T ′

(∫ θ̄
θ (∂z∗el − ∂z∗El)π(θ)dθ∫ θ̄

θ (1− g)π(θ)dθ
− (∂z∗el − ∂z∗El)

)
.
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Using l’Hopital’s rule, we have:

pld

dpl

{
T ′

1− T ′

}
(θ) = − g (θ)

g (θ)− 1

T ′

1− T ′ (∂z∗el (θ)− ∂z∗El)

pld

dpl

{
T ′

1− T ′

}(
θ̄
)
= −

g
(
θ̄
)

1− g
(
θ̄
) T ′

1− T ′
(
∂z∗El − ∂z∗el

(
θ̄
))
,

which gives the formulas for the top and bottom tax rates.

Non-Linear Social Welfare Function (Proposition 3) Before proving Proposition 3, let us briefly
discuss the tax formula when the social welfare function is non-linear. From Lemma A1, we have:

ϵ

(1 + ϵ)2
θπ(θ)

(1− T ′)2
θ

z(θ)

d

dθ

{
dV

dlnpk

}
+

∫ θ̄

θ
g

(
γ
(
θ′
) dV

dlnpk
−
∫ θ̄

θ
gγ
(
θ′
) dV

dlnpk
πdθ′

)
πdθ′ = −

ϵ

1 + ϵ

θπ(θ)

1− T ′ (τk (θ) + ∂z∗Ek) ,

∫ θ̄

θ
g

dV

dlnpk
πdθ = −pkCk.

This formula implicitly determines the optimal tax rate. To see this more precisely, recall that we have:

d

dθ

{
dV

dlnpk

}
= − (1 + ϵ)

z

θ

(
1− T ′)( 1

1− T ′
dT ′

dlnpk
+ ∂z∗ek

)
dV

dlnpk
= −vz∗

(
dT

dlnpk
+ ek

)
.

We can therefore rewrite the formula as:

zζ̃f (z (θ))
pkd

dpk

{
T ′

1− T ′

}
=

∫ z(θ̄)

z(θ)
g

(
γvz∗

(
dT

dlnpk
+ ek

)
−
∫ z(θ̄)

z(θ)
gγvz∗

(
dT

dlnpk
+ ek

)
fdz

)
fdz

+ zζ̃f (z (θ))
pkd

dpk

{
T ′
lin

1− T ′
lin

}
zζ̃f (z (θ))

pkd

dpk

{
T ′
lin

1− T ′
lin

}
= Ez>z(θ) (∂z∗ek − ∂z∗Ek)− zζ̃f (z (θ))

T ′

1− T ′ (∂z∗ek − ∂z∗Ek) .

The tax formula is the sum of two terms. The second one is the change in tax rate when the social welfare

function is linear, pkd
dpk

{
T ′
lin

1−T ′
lin

}
. As before, through this term and Channel #1 and #2, an increase in

the price of necessities induces more redistribution towards the rich. The first term captures an income

effect of redistribution on Pareto weights. If the planner implements the tax reform arising with a linear

social welfare function, the tax burden increases for low income households, which decreases their utility

and raises their Pareto weight. If the Pareto weights of lower income households increases more than

average, then the first term is positive, which counteracts the impact of Channel #1 and #2 and pushes

for more redistribution towards low-income households. We show however in Proposition 3 that this

counterbalancing effect does not fully offset the impact of Channel #1 and #2, even when it is feasible

to compensate all households.

We now turn to the proof of Proposition 3. As in the linear case, we also show that the welfare change

after an homogeneous price increase does not depend on consumption patterns. The argument is the

same as in the linear case.
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Proposition 3. Assume that −G′′ (V, θ) /G′(V, θ) is positive and non increasing (e.g., a CARA or

CRRA function) and that A1 − A3 are satisfied. For an increase in the relative price of necessi-

ties, the compensating scheme dT (z (θ)) = − (sl − s̄l) z
∗dlnp̄l is feasible but only optimal when pref-

erences are homothetic. With non-homothetic preferences, the change in welfare of agent θ, dV G/dp̄l (θ),

satisfies dV/dp̄l (θ) < dV G/dp̄l (θ) < 0 , dV G/dp̄l (θ) − dV G/dp̄l (θ) < dV/dp̄l (θ) − dV/dp̄l (θ), and

E
(
gdV G (θ) /dp̄l

)
= 0, where dV/dp̄l (θ) is the welfare impact of price change with a linear social welfare

function satisfying λθ ∝ G′(V (θ) , θ).

If in addition, θ̄ = ∞, the distribution of types is bounded by a Pareto distribution, θπ′(θ)/π(θ) ≤
−1− ω for θ large enough, and G(V, θ) is either CARA or CRRA with a relative risk aversion coefficient

strictly higher than 0, then we have dV G/dp̄l (θ) ∽ dV/dp̄l (θ) at infinity.

For an homogeneous increase in price, dlnp̄, such that dlnpl = dlnph = dlnp̄, we have that dV G (θ) /dp̄

is independent from consumption preferences.

Proof: Using the formula of lemma A1, we have for an increase in the relative price of the necessity good:

ϵ

(1 + ϵ)2
θπ(θ)

(1− T ′)2
θ

z(θ)

d

dθ

{
dV

dlnp̄l

}
=−

∫ θ̄

θ
g

(
γ
(
θ′
) dV

dlnp̄l
−
∫ θ̄

θ
gγ
(
θ′
) dV

dlnp̄l
πdθ′

)
πdθ′

+
ϵ

(1 + ϵ)2
θπ(θ)

(1− T ′)2
θ

z(θ)

d

dθ

{
dV lin

dlnp̄l

}
,∫ θ̄

θ
g
dV

dlnp̄l
πdθ =0,

ϵ

(1 + ϵ)2
θπ(θ)

(1− T ′)2
θ

z(θ)

d

dθ

{
dV lin

dlnp̄l

}
= − ϵ

1 + ϵ

θπ(θ)

1− T ′ (τl (θ) + ∂z∗El − s̄l) ,

where dV lin

dlnp̄l
is the welfare change with a linear social welfare function described in Corollary 1.

First, note that implementing dV
dlnp̄l

= 0 implies −dT (z (θ))− (sl − s̄l) z
∗dlnp̄l = 0. With this tax change,

we have dz (θ) = −zζ̃ (dT ′ (z (θ)) / (1− T ′) + (∂z∗el − s̄l)) = 0 and the total cost of the reform is:

−
∫

(sl − s̄l) z
∗dlnp̄lπdθ = 0,

so compensating all households is feasible (as it is budget neutral). Such compensation is however not

optimal as it does not solve the first equation of the system. From the proof of Corollary 1, we know that

A15



dV lin

dlnp̄l
> 0 for all θ. We consider the auxiliary system:

ϵ

(1 + ϵ)2
θπ(θ)

(1− T ′)2
θ

z(θ)

d

dθ

{
dV0
dlnp̄l

}
=−

∫ θ̄

θ
gγ
(
θ′
) dV0
dlnp̄l

πdθ′ +
ϵ

(1 + ϵ)2
θπ(θ)

(1− T ′)2
θ

z(θ)

d

dθ

{
dV lin

dlnp̄l

}
,∫ θ̄

θ
gγ (θ)

dV0
dlnp̄l

πdθ =0,

ϵ

(1 + ϵ)2
θπ(θ)

(1− T ′)2
θ

z(θ)

d

dθ

{
dV1
dlnp̄l

}
=−

∫ θ̄

θ
g

(
γ
(
θ′
) dV1
dlnp̄l

−
∫ θ̄

θ
gγ
(
θ′
) dV1
dlnp̄l

πdθ′

)
πdθ′,

∫ θ̄

θ
g
dV1
dlnp̄l

πdθ = −
∫ θ̄

θ
g
dV0
dlnp̄l

πdθ.

We then have: dV
dlnp̄l

= dV0
dlnp̄l

+ dV1
dlnp̄l

.

We first consider the term dV0
dlnp̄l

. Since dV lin

dlnp̄l
> 0, we necessarily have that dV/dp̄l is strictly negative at θ.

If not, −
∫ θ̄
θ gγ (θ

′) dV0
dlnp̄l

πdθ′ is non decreasing and therefore non negative at θ. Therefore, d
dθ

{
dV0
dlnp̄l

}
(θ) ≥

d
dθ

{
dV lin

dlnp̄l

}
(θ) > 0, so dV0/dlnp̄l is positive in a neighborhood around θ.

We show that this leads to a contradiction. Define θ0 the first θ such that dV0/dlnp̄l is 0. θ0 must

exist since
∫ θ̄
θ gγ (θ)

dV0
dlnp̄l

πdθ = 0, so there exists dV0/dlnp̄l < 0. Then, since
∫ θ̄
θ gγ (θ

′) dV0
dlnp̄l

πdθ′ = 0,∫ θ̄
θ0
gγ (θ′) dV0

dlnp̄l
πdθ′ < 0. Since in addition d

dθ

{
dV lin

dlnp̄l

}
is positive at θ0, we have

d
dθ

{
dV0
dlnp̄l

}
strictly positive

at θ0. Since dV0/dlnp̄l (θ0) = 0, by definition, this implies dV0/dlnp̄l (θ) < 0 in (θ0 − ϵ, θ0), which

contradicts the fact that dV0/dlnp̄l (θ) > 0 on (θ, θ0). Therefore, we have dV/dp̄l is strictly negative at θ.

Using the same logic, dV0/dlnp̄l cannot be negative around θ̄.

In addition,
∫ θ̄
θ gγ (θ

′) dV0
dlnp̄l

πdθ′ > 0 on (θ, θ̄). Indeed, suppose not and denote again θ0 the smallest θ0

such that
∫ θ̄
θ0
gγ (θ′) dV0

dlnp̄l
πdθ′ = 0. dV0/dlnp̄l cannot be negative at θ0 since then

∫ θ̄
θ0
gγ (θ′) dV0

dlnp̄l
πdθ′ would

be increasing at θ0, contradicting the fact that it is positive for θ < θ0. Therefore, dV0/dlnp̄l (θ) is non

negative at θ0 – however, using the same reasoning as before, this would imply dV0/dlnp̄l (θ) > 0 for θ > θ0.

As before, suppose not and consider θ1 such that dV0/dlnp̄l (θ1) = 0. We have
∫ θ̄
θ0
gγ (θ′) dV0

dlnp̄l
πdθ′ = 0 and∫ θ1

θ0
gγ (θ′) dV0

dlnp̄l
πdθ′ > 0, so

∫ θ̄
θ1
gγ (θ′) dV0

dlnp̄l
πdθ′ < 0. This implies d

dθ

{
dV0
dlnp̄l

}
(θ1) > 0 so dV0/dlnp̄l (θ1) is

negative below θ1, which contradicts that θ1 exists.

Therefore, dV0/dlnp̄l (θ) > 0 for θ > θ0, so that
∫ θ̄
θ0
gγ (θ′) dV0

dlnp̄l
πdθ′ > 0, which contradicts that

θ0exists.

Next, we show that
∫ θ̄
θ gγ (θ

′) dV0
dlnp̄l

πdθ′ > 0, for all θ, implies
∫ θ̄
θ g

dV0
dlnp̄l

πdθ′ ≥ 0. Since dV0/dlnp̄l

is positive θ̄, we have
∫ θ̄
θ g

dV0
dlnp̄l

πdθ′ > 0 for θ high enough. Suppose that there exists θ0 such that∫ θ̄
θ0
g dV0
dlnp̄l

πdθ′ = 0 and consider the highest θ0such that it is the case. We therefore have
∫ θ̄
θ g

dV0
dlnp̄l

πdθ′ > 0

for θ > θ0 and: ∫ θ̄

θ0

gγ (θ)
dV0
dlnp̄l

πdθ =

∫ θ̄

θ0

γ′ (θ)

∫ θ̄

θ′
g
dV0
dlnp̄l

πdθ′dθ + γ (θ0)

∫ θ̄

θ0

g
dV0
dlnp̄l

πdθ

=

∫ θ̄

θ0

γ′ (θ)

∫ θ̄

θ′
g
dV0
dlnp̄l

πdθ′dθ ≤ 0,

where the second line uses the fact that γ′ (θ) ≤ 0 and
∫ θ̄
θ g

dV0
dlnp̄l

πdθ′ > 0 for θ > θ0. This contradicts the
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fact that
∫ θ̄
θ0
gγ (θ) dV0

dlnp̄l
πdθ > 0, so

∫ θ̄
θ g

dV0
dlnp̄l

πdθ′ ≥ 0 for all θ.

Next, we analyze dV1/dlnp̄l. First, if
∫ θ̄
θ g

dV0
dlnp̄l

πdθ′ = 0, then
∫ θ̄
θ g

dV1
dlnp̄l

πdθ′ = 0 and dV1/dlnp̄l = 0

solves the system’s equations. Therefore dV/dlnp̄l = dV0/dlnp̄l. Suppose
∫ θ̄
θ g

dV0
dlnp̄l

πdθ′ > 0, which im-

plies
∫ θ̄
θ g

dV1
dlnp̄l

πdθ′ < 0. Suppose further
∫ θ̄
θ gγ

dV1
dlnp̄l

πdθ′ < 0. Then we necessarily have that γ dV1
dlnp̄l

<∫ θ̄
θ gγ

dV1
dlnp̄l

πdθ′ in a neighborhood of θ. Indeed, using the same reasoning as above, if γ dV1
dlnp̄l

(θ) >∫ θ̄
θ gγ

dV1
dlnp̄l

πdθ′, then we have γ dV1
dlnp̄l

>
∫ θ̄
θ gγ

dV1
dlnp̄l

πdθ′ for all θ, which would be a contradiction. We

can use the same reasoning as before, if not there is a smallest θ0 such that γ dV1
dlnp̄l

(θ0) =
∫ θ̄
θ gγ

dV1
dlnp̄l

πdθ′;

but at θ0 we necessarily have d
dθ

{
dV1
dlnp̄l

}
(θ0) > 0. Indeed, since γ dV1

dlnp̄l
(θ) >

∫ θ̄
θ gγ

dV1
dlnp̄l

πdθ′ in (θ,θ1), we

have ∫ θ̄

θ0

g

(
γ
(
θ′
) dV1
dlnp̄l

−
∫ θ̄

θ
gγ
(
θ′
) dV1
dlnp̄l

πdθ′

)
πdθ′ < 0,

so d
dθ

{
dV1
dlnp̄l

}
(θ0) > 0.

Since γ is positive decreasing and dV1
dlnp̄l

(θ0) < 0 , d
dθ

{
dV1
dlnp̄l

}
(θ0) > 0 at z0, this means that γ dV1

dlnp̄l

is increasing at θ0, which is a contradicts the fact that γ dV1
dlnp̄l

>
∫ θ̄
θ gγ

dV1
dlnp̄l

πdθ′ below θ0. Finally, if

γ dV1
dlnp̄l

(θ) =
∫ θ̄
θ gγ

dV1
dlnp̄l

πdθ′ , at θ we would have that d
dθ

{
dV1
dlnp̄l

}
= 0 and dV1

dlnp̄l
< 0. Since γ is positive

decreasing, γ dV1
dlnp̄l

>
∫ θ̄
θ gγ

dV1
dlnp̄l

πdθ′ in a neighborhood of θ and we can use the same reasoning to get

γ dV1
dlnp̄l

>
∫ θ̄
θ gγ

dV1
dlnp̄l

πdθ′ for all θ, which is a contradiction.

Therefore, we have γ dV1
dlnp̄l

<
∫ θ̄
θ gγ

dV1
dlnp̄l

πdθ′ in a neighborhood of θ.

Next, we have that D(θ) =
∫ θ̄
θ g
(
γ (θ′) dV1

dlnp̄l
−
∫ θ̄
θ gγ (θ

′) dV1
dlnp̄l

πdθ′
)
πdθ′ is positive on the interval

(θ, θ̄). Consider the smallest θ0 such that it is 0 at θ0 and negative in a neighborhood above. First,

note we cannot have γ dV1
dlnp̄l

<
∫ θ̄
θ gγ (θ

′) dV1
dlnp̄l

πdθ′ at θ0 or in a neighborhood above, since D(θ0) would

be locally increasing. This means that γ dV1
dlnp̄l

≥
∫ θ̄
θ gγ (θ

′) dV1
dlnp̄l

πdθ′ in the neighborhood above θ0, which

implies by the same reasoning as at θ that γ dV1
dlnp̄l

≥
∫ θ̄
θ gγ (θ

′) dV1
dlnp̄l

πdθ′ for all θ > z and implies (since

γ dV1
dlnp̄l

cannot be constant) that D(θ) is positive everywhere above θ0, a contradiction.

Therefore, when
∫ θ̄
θ gγ

dV1
dlnp̄l

πdθ′ < 0, we have that dV1
dlnp̄l

is non positive and decreasing. Since the

equation determining dV1
dlnp̄l

is linear, when
∫ θ̄
θ gγ

dV1
dlnp̄l

πdθ′ > 0, dV1
dlnp̄l

would be non negative and increasing.

Thus, to have
∫ θ̄
θ g

dV1
dlnp̄l

πdθ′ < 0, we need dV1
dlnp̄l

non positive and decreasing and

∫ θ̄

θ
g

(
γ
(
θ′
) dV1
dlnp̄l

−
∫ θ̄

θ
gγ
(
θ′
) dV1
dlnp̄l

πdθ′

)
πdθ′ > 0.

Since dV
dlnp̄l

= dV0
dlnp̄l

+ dV1
dlnp̄l

and dV1
dlnp̄l

(θ) < 0, dV0
dlnp̄l

(θ) < 0 then dV
dlnp̄l

(θ) < 0. Furthermore, since∫ θ̄
θ g
(
γ (θ′) dV1

dlnp̄l
−
∫ θ̄
θ gγ (θ

′) dV1
dlnp̄l

πdθ′
)
πdθ′ > 0,

∫ θ̄
θ g

dV0
dlnp̄l

πdθ′ > 0 and
∫ θ̄
θ g

dV0
dlnp̄l

πdθ′ = 0, we have∫ θ̄
θ g
(
γ (θ′) dV

dlnp̄l
−
∫ θ̄
θ gγ (θ

′) dV
dlnp̄l

πdθ′
)
πdθ′ > 0, so d

dθ
dV

dlnp̄l
< d

dθ
dV lin

dlnp̄l
. Since 0 =

∫ θ̄
θ g

dV
dlnp̄l

πdθ = g dV
dlnp̄l

(θ)+∫ θ̄
θ

d
dθ

dV
dlnp̄l

∫ θ̄
θ gπdθ = g dV lin

dlnp̄l
(θ) +

∫ θ̄
θ

d
dθ

dV lin

dlnp̄l

∫ θ̄
θ gπdθ, we have dV

dlnp̄l
(θ) > dV lin

dlnp̄l
(θ) . In addition since

d
dθ

dV
dlnp̄l

< d
dθ

dV lin

dlnp̄l
we have dV

dlnp̄l
(θ)− dV

dlnp̄l
(θ) < dV lin

dlnp̄l
(θ)− dV lin

dlnp̄l
(θ), which proves the first set of result of

Proposition 3.
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Next, since θπ′(θ)/π(θ) ≤ −1− ω, we have for any θ > θ0, θ0large enough, π(θ) ≤ π(θ0) (θ/θ0)
−1−ω .

This implies, since g is strictly decreasing when G(V ) is either CARA or CRRA, that g < δ < 1 for θ

large enough. Therefore, 0 ≤ T ′

1−T ′ ≤ 1
1+γ (1− δ) 1+ϵ

ϵ , which implies that there is some 1 − T̄ ′ > 0 such

that 1− T ′ > 1− T̄ ′ for all θ.

Note that we have:

d

dθ

{
dV lin

dlnp̄l

}
= − (1 + ϵ)

(
1− T ′) z(θ)

θ
(τl (θ) + ∂z∗El − s̄l)

= − (1 + ϵ)
(
1− T ′)1+ϵ

θϵ (τl (θ) + ∂z∗El − s̄l) .

Using again the fact that π(θ) ≤ π(θ0) (θ/θ0)
−1−γ , it is direct to show that 0 < m < τl (θ)+∂z∗El−s̄l < M ,

so we have, since 1 ≥ 1−T ′ > 1− T̄ ′ > 0 ,0 < (1 + ϵ) m̄θϵ < d
dθ

{
dV lin

dlnp̄l

}
< (1 + ϵ) M̄θϵ. This result implies

that for any θ > θ0, θ0large enough, ¯mθ1+ϵ < dV lin

dlnp̄l
(θ)− dV lin

dlnp̄l
(θ0) < M̄θ1+ϵ, ddθ

{
dV lin

dlnp̄l

}
and dV lin

dlnp̄l
(θ) grows

at the same rate as θϵ and θ1+ϵ respectively.

We now show that F (θ) = (1+ϵ)2

ϵ
(1−T ′)2

θπ(θ)
z(θ)
θ

∫ θ̄
θ g
(
γ (θ′) dV1

dlnp̄l
−
∫ θ̄
θ gγ (θ

′) dV1
dlnp̄l

πdθ′
)
πdθ′ grows at a

smaller rate than θϵ, which implies that d
dθ

dV
dlnp̄l

(θ) ∼ d
dθ

dV lin

dlnp̄l
and dV

dlnp̄l
(θ) ∼ dV lin

dlnp̄l
for θ large enough.

Indeed, we have:

d

dθ

{
dV

dlnp̄l

}
= −(1 + ϵ)2

ϵ

(1− T ′)2

θπ(θ)

z(θ)

θ

∫ θ̄

θ
g

(
γ
(
θ′
) dV

dlnp̄l
−
∫ θ̄

θ
gγ
(
θ′
) dV

dlnp̄l
πdθ′

)
πdθ′ +

d

dθ

{
dV lin

dlnp̄l

}
,

= −F (θ) + d

dθ

{
dV lin

dlnp̄l

}
,

so if F (θ) grows at a lower rate than d
dθ

{
dV lin

dlnp̄l

}
(e.g. grows at rate ln(θ)), then d

dθ
dV

dlnp̄l
(θ) ∼ d

dθ
dV lin

dlnp̄l
. This

implies also that tax rate are the same for high income households. Denote X ≡ −
∫ θ̄
θ gγ (θ

′) dV1
dlnp̄l

πdθ′ ≥ 0

, we know from the previous result that d
dθ

dV
dlnp̄l

< d
dθ

dV lin

dlnp̄l
so dV1

dlnp̄l
(θ) < dV1

dlnp̄l
(θ0) + M̄

(
θ1+ϵ − θ1+ϵ

0

)
. We

now consider θ1 such that dV1
dlnp̄l

(θ0) + M̄
(
θ1+ϵ
1 − θ1+ϵ

0

)
> 0 for θ > θ1: we have

F (θ) =
(1 + ϵ)

2

ϵ

(1− T ′)
2

θπ(θ)

z(θ)

θ

∫ θ̄

θ

g

(
γ (θ′)

dV

dlnp̄l
−
∫ θ̄

θ

gγ (θ′)
dV

dlnp̄l
πdθ′

)
πdθ′

=
(1 + ϵ)

2

ϵ

(1− T ′)
2+ϵ

θϵ

θπ(θ)

∫ θ̄

θ

(
gγ (θ′)

dV

dlnp̄l
+X

)
πdθ′

≤ (1 + ϵ)
2

ϵ
(1− T ′)

2+ϵ
θϵ−1

∫ θ̄

θ

(θ′/θ)
−1−ω

(
−G′′(V (θ′))

(
dV1
dlnp̄l

(θ0) + M̄
(
θ′1+ϵ − θ1+ϵ

0

))
+G′(V (θ′))X

)
dθ′,

where we used again the fact that π(θ′) ≤ π(θ) (θ′/θ)−1−ω .

Now, we have V ′ (θ) = 1
θ

(
z(θ)
θ

)1+ 1
ϵ
= (1− T ′)1+ϵ θϵ, which implies 0 < mV < V (θ) /θ1+ϵ < MV , for

θ large enough V (θ) grows at rate θ1+ϵ. Now, if G is CARA with coefficient β, we have:

F (θ) ≤ (1 + ϵ)2

ϵ
θϵ−1

∫ θ̄

θ

(
θ′/θ

)−1−ω
e−βmV θ′1+ϵ

(
β

(
dV1
dlnp̄l

(θ0) + M̄
(
θ′1+ϵ − θ1+ϵ

0

))
+X

)
dθ′

≤ Cθ1+2ϵe−βmV θ1+ϵ
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Since θ′1+2ϵe−βmV θ1+ϵ
= o (θϵ), we have d

dθ
dV

dlnp̄l
(θ) ∼ d

dθ
dV lin

dlnp̄l
.

Next, if G is CRRA with coefficient β, we have:

F (θ) ≤ (1 + ϵ)2

ϵ
θϵ−1

∫ θ̄

θ

(
θ′/θ

)−1−ω
e−βmV θ′1+ϵ

(
β
(
mV θ

′)−(1+β)(1+ϵ)

(
dV1

dlnp̄l
(θ0) + M̄

(
θ′1+ϵ − θ1+ϵ

0

))
+
(
mV θ

′)−β(1+ϵ)X

)
dθ′

≤ Cθϵ−β(1+ϵ).

Since θϵ−β(1+ϵ) = o (θϵ), we have d
dθ

dV
dlnp̄l

(θ) ∼ d
dθ

dV lin

dlnp̄l
. In both cases this directly implies dV

dlnp̄l
(θ) ∼ dV lin

dlnp̄l
.

For an homogeneous price change, we have:

ϵ

(1 + ϵ)2
θπ(θ)

(1− T ′)2
θ

z(θ)

d

dθ

{
dV

dlnp̄l

}
=−

∫ θ̄

θ
g

(
γ
(
θ′
) dV

dlnp̄l
−
∫ θ̄

θ
gγ
(
θ′
) dV

dlnp̄l
πdθ′

)
πdθ′

+
ϵ

(1 + ϵ)2
θπ(θ)

(1− T ′)2
θ

z(θ)

d

dθ

{
dV lin

dlnp̄l

}
,∫ θ̄

θ
g
dV

dlnp̄l
πdθ =−

∫ θ̄

θ
zπdθ,

ϵ

(1 + ϵ)2
θπ(θ)

(1− T ′)2
θ

z(θ)

d

dθ

{
dV lin

dlnp̄l

}
= − ϵ

1 + ϵ

θπ(θ)

1− T ′

Note that dV lin

dlnp̄l
is now independent from consumption preferences, so dV

dlnp̄l
is independent from consump-

tion preferences and
∫ θ̄
θ g

dV
dlnp̄l

πdθ < 0. □

Non-Linear Social Welfare Function in a Simple Example Finally we provide the derivations in

our simple three-agent example. We have 0 = θp < θm < θr and agent preferences are given by

Vi = u(cl, ch)−
1

1 + 1
ε

(
z

θi

)1+ 1
ε

.

Given the single crossing property, the IC constraint are local and downward binding and are:

Vm = Vp

Vr = Vm +
1

1 + 1
ε

(
zm
θm

)1+ 1
ε

− 1

1 + 1
ε

(
zm
θr

)1+ 1
ε

.

The planner’s problem is to solve:

sup
zi,Vi

∑
i

G (Vi, θi)πi

s.t.Vm = Vp

Vr = Vm +
1

1 + 1
ε

(
zm
θm

)1+ 1
ε

− 1

1 + 1
ε

(
zm
θr

)1+ 1
ε

∑
i

(z∗i − zi)πi +
∑
k

(pkCk − χk (ξk, Ck)) = 0
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We obtain that the tax rate is 0 at the top (no distortion at the top), 0 at the bottom (since θp = 0),

while the tax rate for θmsatisfies:

(gm − 1)πm + (gp − 1)πp = πm
T ′
m

1− T ′
m

1

1− (θm/θr)
1+ 1

ϵ

.

We assume that at initial price ∂z∗el,p > ∂z∗el,m = ∂z∗El > ∂z∗el,r and ∂z∗El < s̄l. As before, we assume

vz∗ = 1 for all three agents and we consider an increase in the relative price of the necessity good, dp̄l.

We first show that we can express all the welfare changes, dVi/dp̄l, in terms of the labor supply change

of the middle income households, dzm/dp̄l.

Differentiating the IC constraints and the budget constraint, we obtain:

dVp
dp̄l

=
dVm
dp̄l

dVr
dp̄l

=
dVm
dp̄l

+
(
1− T ′

m

)(
1−

(
θm
θr

)1+ 1
ε

)
dzm
dp̄l

0 =
dVp
dp̄l

πp +
dVm
dp̄l

πm +
dVr
dp̄l

πr − T ′
mπm

dzm
dp̄l

.

Solving for these equations, we obtain:

dVp
dp̄l

=
dVm
dp̄l

= −
(
1− T ′

m

)(
1−

(
θm
θr

)1+ 1
ε

)
grπr

dzm
dp̄l

dVr
dp̄l

=
(
1− T ′

m

)(
1−

(
θm
θr

)1+ 1
ε

)
(1− grπr)

dzm
dp̄l

Note that
dVp

dp̄l
and dVm

dp̄l
have the opposite signs to dzm

dp̄l
, while dVr

dp̄l
has the same sign.

Differentiating the tax formula, we obtain, defining γi = −G′′
i

G′
i
> 0:

1

1− T ′
m

1

1− (θm/θr)
1+ 1

ϵ

1

ϵ
πm

dlnzm
dlnp̄l

= −

(
(∂z∗el,r − ∂z∗El)πr + (∂z∗E − s̄l)πm

1

1− T ′
m

1

1− (θm/θr)
1+ 1

ϵ

)

−
(
(1− πrgr) γr

dVr

dlnp̄l
−
(
πpgpγp

dVp

dlnp̄l
+ πmgmγm

dVm

dlnp̄l

))
grπr

= −

(
(∂z∗el,r − ∂z∗El)πr + (∂z∗E − s̄l)πm

1

1− T ′
m

1

1− (θm/θr)
1+ 1

ϵ

)
− G dlnzm

dlnp̄l
,

with G = zm (1− T ′
m)

(
1−

(
θm
θr

)1+ 1
ε

)(
(1− grπr)

2 γr + grπr (πpgpγp + πmgmγm)
)
grπr > 0. When γi =

0 (G is linear), G = 0, When γi > 0 (G is concave), G > 0. Note in addition that, since l is a

necessity,(∂z∗el,r − ∂z∗El)πr + (∂z∗E − s̄l)πm
1

1−T ′
m

1

1−(θm/θr)
1+1

ϵ
< 0. Therefore, we have

dVp
dp̄l

=
dVm
dp̄l

< 0 <
dVr
dp̄l

,

and denoting
dV lin

i
dp̄l

the tax rate with a linear social welfare function, dVi
dp̄l

= 1
1+G

dV lin
i

dp̄l
. Using (1− T ′

m) dlnzm
dlnp̄l

=
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−ϵ
(
dT ′lin

m
dp̄l

+ (1− T ′
m) (∂z∗El − s̄l)

)
, it is direct to show:

dT ′
m

dp̄l
=

1

1 + G

(
dT ′lin

m

dp̄l
− G

(
1− T ′

m

)
(∂z∗El − s̄l)

)
1

1− (θm/θh)
1+ 1

ϵ

πm
d

dlnp̄l

{
T ′lin

m

1− T ′lin
m

}
= (∂z∗el,h − ∂z∗El)πh < 0.

This proves our formulas for the three-agent example.

A.2.3 Proofs for Section 4.3

Non-Linear Production Function (Proposition 4) We now prove Proposition 4, our main result

with non-linear production functions. Recall that we consider a cost shifter, p∗k = 1/∂ξkϕk, which implies

∂p∗kϕk = 1 and ∂p∗kχk = (1− α+ tw)
−1Ck.

1 As before, we define an increase int the relative price of the

necessity dlnp̄l, such that dlnp∗l = s̄hdlnp̄l and dlnp∗h = −s̄ldlnp̄l. We will also provide formulas for an

homogeneous price change dlnp̄, such that dlnp∗l = dlnp∗h = dlnp̄.

We first prove the following Lemma, which characterizes the response of the tax rate to an increase

in the price of k in partial equilibrium. Much of the derivation is similar to the derivation of Proposition

2.

Lemma A2. Under A3 − A4, the partial equilibrium response of the income tax to a change in the

relative price of necessities is:

∂

∂lnp∗k

{
T ′

1− T ′

}
=

1− tw

zζ̃f(z(θ))
Ez>z(θ) (∂z∗ek − ∂z∗Ek)−

(
T ′

1− T ′ + tw

)
(∂z∗ek − ∂z∗Ek) .

Under A1, ∂lnp∗l T
′ = −∂lnp∗hT

′ is negative for all θ. The response to an increase in the relative price of

necessities ∂p̄lT
′ = ∂p∗l T is also negative.

Proof: Using the formulas of Lemma A1, we have for an arbitrary shifter ξk:

ϵ

(1 + ϵ)2
θπ(θ)

(1− T ′)2
θ

z(θ)

d

dθ

{
dV

dξk

}
= − ϵ

1 + ϵ

θπ(θ)

1− T ′

∑
m=l,h

(τm (θ) + ∂z∗Em)
1

pm

dpm
dξk

,

(1− tw)

∫ θ̄

θ
g
dV

dξk
πdθ = −∂ξkχk (ξk, Ck) .

Since we consider the partial equilibrium response where the shifter is p∗k and price do not endogenously

respond, we have dpk
dξk

= 1, dpm
dξk

= 0 for m ̸= k. Using as before:

d

dθ

{
∂V (θ)

∂lnp∗k

}
= −ϵz

(
1 +

1

ϵ

)
1

θ

(
1− T ′)( 1

1− T ′
∂T ′

∂lnpk
+ ∂z∗ek

)
,

1With monopolistic competition (τw = α), this is obvious since χk = Ckϕk so ∂p∗
k
χk = Ck. With competitive firms

(τw = 0), we can rewrite the pricing function as ϕk(ξk, Ck) = ϕ̃k(ξk)C
−α
k = ∂Ckχk(ξk, Ck) so χk(ξk, Ck) = ϕk(ξk, Ck)Ck/

(1− α) + χk, where the potential fixed cost χkis assumed to be independent from ξk.
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we obtain after the same algebra as in Proposition 2:

∂

∂lnp∗k

{
T ′

1− T ′

}
=

1− tw

zζ̃f(z(θ))
Ez>z(θ) (∂z∗ek − ∂z∗Ek)−

(
T ′

1− T ′ + tw

)
(∂z∗ek − ∂z∗Ek) .

We now want to show that F (z (θ)) = (1− tw)Ez>z(θ) (∂z∗ek − ∂z∗Ek)−zζ̃f(z(θ))
(

T ′

1−T ′ + tw

)
(∂z∗ek − ∂z∗Ek)

is everywhere negative for a necessity good. Since it has the opposite sign for a luxury, it will show that

it is everywhere positive for a luxury. Assume that ∂z∗ek is decreasing (k is a necessity good) and define

θ∗ such that ∂z∗ek (z
∗ (θ∗) ,p) = ∂z∗Ek. As before, we have:

F ′ (z (θ)) = − (1− tw) (∂z∗ek − ∂z∗Ek) gf(z)− (1− tw)
(
1− T ′) ∂z∗z∗ek ∫ z(θ̄)

z(θ)
(1− g) f(z)dz.

For θ ≥ θ∗, we have ∂z∗ek < ∂z∗Ek and since ∂z∗z∗ek ≤ 0, we have F ′ (z (θ)) > 0 for θ ≥ θ∗. Since

F
(
z
(
θ̄
))

= 0, this implies F (z (θ)) < 0 for θ ≥ θ∗.

Note in addition that we can rewrite F (z (θ)) as:

F (z (θ)) = − (1− tw)

∫ z(θ)

z(θ)
(∂z∗ek − ∂z∗Ek) f(z)dz + (1− tw) (∂z∗ek − ∂z∗Ek)

∫ z(θ)

z(θ)
(1− g) f(z)dz.

For θ ≤ θ∗, we have ∂z∗ek − ∂z∗Ek > 0 and decreasing in θ so:

F (z (θ)) < − (1− tw) (∂z∗ek − ∂z∗Ek)

∫ z(θ)

z(θ)
f(z)dz + (1− tw) (∂z∗ek − ∂z∗Ek)

∫ z(θ)

z(θ)
(1− g) f(z)dz

= − (1− tw) (∂z∗ek − ∂z∗Ek)

∫ z(θ)

z(θ)
gf(z)dz < 0.

So F (z (θ)) < 0 for θ < θ∗, which implies pld
dpl

{
T ′

1−T ′

}
< 0. By direct inspection, since ∂z∗el − ∂z∗El =

− (∂z∗eh − ∂z∗Eh), we have phd
dph

{
T ′

1−T ′

}
= −pld

dpl

{
T ′

1−T ′

}
> 0. □

We now turn to the proof of Proposition 4. We will consider both a change in the relative price of

necessity and a homogeneous price increase, which together span the entire space of price changes.

Proposition 4. Under A3−A4, the partial equilibrium response of the income tax to an increase in the

price of k is:

∂

∂lnp∗k

{
T ′

1− T ′

}
=

1− tw

zζ̃f(z(θ))
Ez>z(θ) (∂z∗ek − ∂z∗Ek)−

(
T ′

1− T ′ + tw

)
(∂z∗ek − ∂z∗Ek) .

Under A1, ∂p̄lT
′ = ∂p∗l T

′ is negative for all θ, ∂lnp∗hT
′ = −∂lnp∗l T

′ is positive for all θ and for an homoge-

neous price change ∂p̄T
′ = 0.

In general equilibrium, response of the income tax to an increase in the relative price of necessities is:

dT ′

dp̄l
= (1− α (σ +Ω))−1 ∂T

′

∂p̄l
,
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with Ω = 1
1−tw

ζ
s̄hs̄l

(
Ez

(
(τl + ∂z∗El − s̄l)

2
)
+ αζ

1−tw−αζ (Ez(τl + ∂z∗El − s̄l))
2
)
> 0. When α > 0, dT ′

dp̄l
<

∂T ′

∂p̄l
< 0, when α < 0, ∂T ′

∂p̄l
< dT ′

dp̄l
< 0.

The response of the income tax to an homogenous increase in prices :

dT ′

dp̄
= (1− α (σ +Ω))−1 1

s̄hs̄l

α

1− α

(
(∂z∗El − s̄l) +

ζ

1− tw − αζ
Ez(τl + ∂z∗El − s̄l)

)
∂T ′

∂p̄l
.

With dT ′

dp̄ > 0 if α > 0, dT ′

dp̄ < 0 if α < 0.

Before proving Proposition 4, let us briefly discuss the change in tax rate for a homogeneous increase

in prices y: dlnp∗l = dlnp∗h = dlnp̄. In partial equilibrium, this price change has no effect on tax rates.

Indeed, per Lemma A2, we have ∂lnp∗hT
′ + ∂lnp∗l T

′ = 0. In general equilibrium, as the price increase is

homogeneous, there are no direct substitution effects. With homothetic preferences, there is no change in

relative prices and relative quantities. With non-homothetic preference, a homogeneous increase in prices

endogenously increases the relative price of luxuries. In the proof of Proposition 4, we show that, when

α ≥ 0, the increase in the relative price of h is given by:

d log (ph/pl)

d log p∗
= − (1− α (σ +Ω))−1 1

s̄hs̄l

α

1− α

(
(∂z∗El − s̄l) +

ζ

1− tw − αζ
Ez(τl + ∂z∗El − s̄l)

)
≥ 0.

An increase in inflation reduces real income and therefore decreases the share of h. As a result, the

relative price of h increases through market size effects (α > 0), and this increase is amplified through

the substitution and income effects described in the main text.

Thus, while homogeneous exogenous price increases have no impact on tax rates in partial equilibrium,

we find that they lead to more redistribution in general equilibrium. Households reduce their labor supply

and therefore reallocate their income towards the necessity product, which increases the relative price of

the luxury product. It then becomes optimal to redistribute to lower income households.

Proof: We have already proved the first part of Proposition 4 in Lemma A.2. We now derive formulas

for the general equilibrium response. For an arbitrary cost shifter ξk, we have:

ϵ

(1 + ϵ)2
θπ(θ)

(1− T ′)2
θ

z(θ)

d

dθ

{
dV

dξk

}
= − ϵ

1 + ϵ

θπ(θ)

1− T ′

∑
m=l,h

(τm (θ) + ∂z∗Em)
1

pm

dpm
dξk

.

(1− tw)

∫ θ̄

θ
g
dV

dξk
πdθ = −∂ξkχk (ξk, Ck) .

Using the same algebra as in Lemma A.2, we obtain:

d

dξk

{
T ′

1− T ′

}
=
∑

m=l,h

∂

∂lnp∗k

{
T ′

1− T ′

}
1

pm

dpm
dξk

∂

∂lnp∗k

{
T ′

1− T ′

}
=

1− tw

zζ̃f(z(θ))
Ez>z(θ) (∂z∗ek − ∂z∗Ek)−

(
T ′

1− T ′ + tw

)
(∂z∗ek − ∂z∗Ek) .
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Using the fact, from Lemma A.2 that ∂lnp∗hT
′ = −∂lnp∗l T

′ = −∂lnp̄lT ′, we have

d

dξk

{
T ′

1− T ′

}
=

∂

∂lnp̄l

{
T ′

1− T ′

}(
1

pl

dpl
dξk

− 1

ph

dph
dξk

)
,

so the general equilibrium response of the tax rate only depends on the endogenous increase of the relative

price of necessities. Next, we have using our pricing function:

1

pl

dpl
dξk

− 1

ph

dph
dξk

=
1

pl

∂pl
∂ξk

− 1

ph

∂ph
∂ξk

− α

(
1

Cl

dCl

dξk
− 1

Ch

dCh

dξk

)
s̄l

1

pl

dpl
dξk

+ s̄h
1

ph

dph
dξk

= s̄l
1

pl

∂pl
∂ξk

+ s̄h
1

ph

∂ph
∂ξk

− α

(
s̄l

1

Cl

dCl

dξk
+ s̄h

1

Ch

dCh

dξk

)
.

To complete the proof of Proposition 4, we therefore need to determine the response of aggregate demand

to price shifter ξk. We record the derivation in the following Lemma:

Lemma A3. The response of aggregate consumption to an arbitrary cost shift ξkis given by:

1

Cl

dCl

dξk
− 1

Ch

dCh

dξk
=− ζ

1− tw

1

s̄hs̄l

∫ θ̄

θ
(τl + (∂z∗El − s̄l))

2 z(θ)

Z
πdθ

(
1

pl

dpl
dξk

− 1

ph

dph
dξk

)
− ζ

1− tw

1

s̄hs̄l

∫ θ̄

θ
(τl + (∂z∗El − s̄l))

z(θ)

Z
πdθ

(
s̄l

1

pl

dpl
dξk

+ s̄h
1

ph

dph
dξk

)
− σ

(
1

pl

dpl
dξk

− 1

ph

dph
dξk

)
− 1

1− tw

1

s̄hs̄l
(∂z∗El − s̄l)

1

Z
∂ξkχk (ξk, Ck) ,

s̄l
1

Cl

dCl

dξk
+ s̄h

1

Ch

dCh

dξk
=− ζ

1− tw

∫ θ̄

θ
(τl (θ) + ∂z∗El − s̄l)

z(θ)

Z
πdθ

(
1

pl

dpl
dξk

− 1

ph

dph
dξk

)
− ζ

1− tw

(
s̄l

1

pl

dpl
dξk

+ s̄h
1

ph

dph
dξk

)
− 1

1− tw

1

Z
∂ξkχk (ξk, Ck) ,

and we have 1
Cl

∂Cl
∂lnp̄l

− 1
Ch

∂Ch
∂lnp̄l

, s̄l
1
Cl

∂Cl
∂lnp̄ + s̄h

1
Ch

∂Ch
∂lnp̄ ≤ 0, 1

Cl

∂Cl
∂lnp̄ − 1

Ch

∂Ch
∂lnp̄ , s̄l

1
Cl

∂Cl
∂lnp̄l

+ s̄h
1
Ch

∂Ch
∂lnp̄l

≥ 0.

Proof: We have, using Slutsky’s formula:

1

Cm

dCm

dξk
=

1

Cm

∫ θ̄

θ

dcm
dξk

πdθ

=
1

Cm

∫ θ̄

θ
∂z∗cm

(
dz∗

dξk
− cl

dpl
dξk

− ch
1

ph

dph
dξk

)
πdθ +

1

Cm

∫ θ̄

θ
∂plc

h
m

dpl
dξk

πdθ +
1

Cm

∫ θ̄

θ
∂phc

h
m

dph
dξk

πdθ

=
1

Cm

∫ θ̄

θ
∂z∗cm

(
1

vz∗

dV

dξk
+
(
1− T ′) dz

dξk

)
πdθ + Sml

1

pl

dpl
dξk

+ Smh
1

ph

dph
dξk

=
1

Cm

∫ θ̄

θ

d

dθ

{
dV

dξk

}∫ θ̄

θ
(∂z∗cm − ∂z∗Cm)πdθ +

∂z∗Cm

Cm

∫ θ̄

θ

1

vz∗

dV

dξk
πdθ

+
1

Cm

∫ θ̄

θ
∂z∗cm

(
1− T ′) dz

dξk
πdθ + Sml

1

pl

dpl
dξk

+ Smh
1

ph

dph
dξk

,
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where the last line is the third line integrated by part.
Next, using from the proof of Lemma A1:∫ θ̄

θ

((
1

1− T ′ − (1− tw)

)
ϵ

1 + ϵ
θ
d

dθ

{
dV (θ)

dξk

}
− (1− tw)

1

vz∗
dV (θ)

dξk

)
π (θ) dθ = − (1− tw)

∫ θ̄

θ

g (θ)
dV (θ)

dξk
π (θ) dθ

= ∂ξkχk (ξk, Ck) ,

we obtain:

1

Cm

dCm

dξk
=

1

Cm

∫ θ̄

θ

d

dθ

{
dV

dξk

}∫ θ̄

θ
(∂z∗cm − ∂z∗Cm)πdθ′dθ

+
1

Cm

∫ θ̄

θ
∂z∗cm

(
1− T ′) dz

dξk
πdθ + Sml

1

pl

dpl
dξk

+ Smh
1

ph

dph
dξk

+
1

1− tw

∂z∗Cm

Cm

∫ θ̄

θ

d

dθ

{
dV

dξk

}(
1

1− T ′ − (1− tw)

)
ϵ

1 + ϵ
θπ (θ) dθ − 1

1− tw

∂z∗Cm

Cm
∂ξkχk (ξk, Ck) .

Then, using τh (θ) = −τl (θ), ∂z∗El − s̄l = − (∂z∗Eh − s̄h) we can rewrite the formula of Lemma A1 as:

d

dθ

{
dV

dξk

}
= − (1 + ϵ)

(
1− T ′) z(θ)

θ

(
(τl (θ) + ∂z∗El − s̄l)

(
1

pl

dpl
dξk

− 1

ph

dph
dξk

)
+ s̄l

1

pl

dpl
dξk

+ s̄h
1

ph

dph
dξk

)
dz

dξk
=

ϵ

1 + ϵ

θ

1− T ′
d

dθ

{
dV (θ)

dξk

}
= −ϵz(θ)

(
(τl (θ) + ∂z∗El − s̄l)

(
1

pl

dpl
dξk

− 1

ph

dph
dξk

)
+ s̄l

1

pl

dpl
dξk

+ s̄h
1

ph

dph
dξk

)
,

so we have:

1

Cm

dCm

dξk
=

1

Em

∫ θ̄

θ

d

dθ

{
dV

dξk

}{
1 + ϵ

ϵ

1

θπ

∫ θ̄

θ

(∂z∗em − ∂z∗Em)πdθ′ + (∂z∗em − ∂z∗Em) +
1

1− T ′
1

1− tw
∂z∗Em

}
ϵ

1 + ϵ
θπ (θ) dθ

+ Sml
1

pl

dpl
dξk

+ Smh
1

ph

dph
dξk

− 1

1− tw

∂z∗Em

Em
∂ξkχk (ξk, Ck) ,

=
1

1− tw

1

Em

∫ θ̄

θ

d

dθ

{
dV

dξk

}
{τm + (∂z∗Em − s̄m)} 1

1− T ′
ϵ

1 + ϵ
θπ (θ) dθ

+
s̄m
Em

1

1− tw

∫ θ̄

θ

d

dθ

{
dV

dξk

}
1

1− T ′
ϵ

1 + ϵ
θπ (θ) dθ

+ Sml
1

pl

dpl
dξk

+ Smh
1

ph

dph
dξk

− 1

1− tw

∂z∗Em

Em
∂ξkχk (ξk, Ck) .
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We therefore obtain, using τl +
1

1−T ′ (∂z∗El − s̄l) = −τh − 1
1−T ′ (∂z∗Eh − s̄h):

1

Cl

dCl

dξk
− 1

Ch

dCh

dξk
=

1

1− tw

El + Eh

ElEh

∫ θ̄

θ

d

dθ

{
dV

dξk

}
{τl + (∂z∗El − s̄l)}

1

1− T ′
ϵ

1 + ϵ
θπ (θ) dθ

+ (Sll − Shl)
1

pl

dpl
dξk

+ (Slh − Shh)
1

ph

dph
dξk

− 1

1− tw

(
∂z∗El

El
− ∂z∗Eh

Eh

)
∂ξkχk (ξk, Ck) ,

=− 1

1− tw

1

s̄hs̄l

∫ θ̄

θ
(τl + (∂z∗El − s̄l))

2 ϵ
z(θ)

Z
πdθ

(
1

pl

dpl
dξk

− 1

ph

dph
dξk

)
− 1

1− tw

1

s̄hs̄l

∫ θ̄

θ
(τl + (∂z∗El − s̄l)) ϵ

z(θ)

Z
πdθ

(
s̄l

1

pl

dpl
dξk

+ s̄h
1

ph

dph
dξk

)
− σ

(
1

pl

dpl
dξk

− 1

ph

dph
dξk

)
− 1

1− tw

1

s̄hs̄l
(∂z∗El − s̄l)

1

Z
∂ξkχk (ξk, Ck) ,

s̄l
1

Cl

dCl

dξk
+ s̄h

1

Ch

dCh

dξk
=

1

Z

1

1− tw

∫ θ̄

θ

d

dθ

{
dV

dξk

}
1

1− T ′
ϵ

1 + ϵ
θπ (θ) dθ − 1

1− tw

1

Z
∂ξkχk (ξk, Ck)

=− 1

1− tw

∫ θ̄

θ
(τl (θ) + ∂z∗El − s̄l) ϵ

z(θ)

Z
πdθ

(
1

pl

dpl
dξk

− 1

ph

dph
dξk

)
− ϵ

1− tw

(
s̄l

1

pl

dpl
dξk

+ s̄h
1

ph

dph
dξk

)
− 1

1− tw

1

Z
∂ξkχk (ξk, Ck) ,

with Z = El + Eh =
∫ θ̄
θ z(θ)πdθ. This proves the formulas of the Lemma using ϵ = ζ. The sign of the

response is a direct consequence of Corollary 1 which shows τl + (∂z∗El − s̄l) ≤ 0. □
Coming back to the proof of Proposition 4 and using the formulas of Lemma A3, we have:

1

pl

dpl
dξk

− 1

ph

dph
dξk

= (1− α (σ +Ω))−1

(
1

pl

∂pl
∂ξk

− 1

ph

∂ph
∂ξk

+ α
1

1− tw

1

s̄hs̄l
(∂z∗El − s̄l)

1

Z
∂ξkχk (ξk, Ck)

)
+ (1− α (σ +Ω))−1

αζ
1−tw

1− αζ
1−tw

1

s̄hs̄l

∫ θ̄

θ

(τl + (∂z∗El − s̄l))
z(θ)

Z
πdθ

(
s̄l

1

pl

∂pl
∂ξk

+ s̄h
1

ph

∂ph
∂ξk

+ α
1

1− tw

1

Z
∂ξkχk (ξk, Ck)

)
,

with Ω = ζ
1−tw

1
s̄hs̄l

(∫ θ̄
θ (τl + (∂z∗El − s̄l))

2 z(θ)
Z πdθ + αζ

1−tw−αζ

(
α ζ

1−tw

∫ θ̄
θ (τl + (∂z∗El − s̄l))

z(θ)
Z πdθ

)2)
≥

0, with strict inequality if preferences are non-homothetic.

For an increase in the relative price of necessities, we have ∂lnpl
∂lnp̄l

= s̄h,
∂lnph
∂lnp̄l

= −s̄l ∂lnpl
∂lnp̄l

= s̄h and

∂lnp̄lχl = (1− α+ tw)
−1 s̄hEl, ∂lnp̄lχh = (1− α+ tw)

−1 s̄lEh, so we have:

1

pl

dpl
dlnp̄l

− 1

ph

dph
dlnp̄l

= (1− α (σ +Ω))−1

d

dlnp̄l

{
T ′

1− T ′

}
= (1− α (σ +Ω))−1 ∂

∂lnp̄l

{
T ′

1− T ′

}
<

∂

∂lnp̄l

{
T ′

1− T ′

}
< 0 if α > 0,

which shows the first formula of Proposition 4 and that partial equilibrium effects are amplified in general

equilibrium.
Finally for a homogenous price increase ∂lnpl

∂lnp̄ = ∂lnph
∂lnp̄ = 1, ∂lnp̄lχl = (1− α+ tw)

−1El, ∂lnp̄lχh =
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(1− α+ tw)
−1Eh, so we have:

1

pl

dpl

dlnp̄
−

1

ph

dph

dlnp̄
= (1− α (σ +Ω))−1 α

1− α

1

s̄hs̄l

(
(∂z∗El − s̄l) +

ζ

1− tw − αζ

1

s̄hs̄l

∫ θ̄

θ
(τl + (∂z∗El − s̄l))

z(θ)

Z
πdθ

)
d

dlnp̄

{
T ′

1− T ′

}
= (1− α (σ +Ω))−1 α

1− α

1

s̄hs̄l

(
(∂z∗El − s̄l) +

ζ

1− tw − αζ

1

s̄hs̄l

∫ θ̄

θ
(τl + (∂z∗El − s̄l))

z(θ)

Z
πdθ

)
∂

∂lnp̄l

{
T ′

1− T ′

}
.

Since l is a necessity, we have (∂z∗El − s̄l) +
ζ

1−tw−αζ
1

s̄hs̄l

∫ θ̄
θ (τl + (∂z∗El − s̄l))

z(θ)
Z πdθ < 0, ∂lnp̄lT

′ < 0 so

d
dlnp̄

{
T ′

1−T ′

}
has the same sign as α.

A.2.4 Formulas for Section 5.2

In this section, we provide the formulas that underpin the quantitative results of Section 5.2. The formulas

allow us to compute the change in taxes in response to an arbitrary cost shock ξk in an n-sector economy.

While the formulas are expressed in terms of dV
dξk

, they allow us to recover tax rates using:

d

dθ

{
dV

dξk

}
= − (1 + ϵ)

z

θ

(
1− T ′)( 1

1− T ′
dT ′

dξk
+

n∑
m=1

∂z∗em
1

pm

dpm
dξk

)
,

and we can rewrite the formula of Proposition A1 below as:

zζ̃f (z (θ))
d

dξk

{
T ′

1− T ′

}
=

∫ z(θ̄)

z(θ)

g

(
γvz∗

(
dT

dξk
+

N∑
m=1

em
1

pm

dpm
dξk

)
−
∫ z(θ̄)

z(θ)

gγvz∗

(
dT

dξk
+

n∑
m=1

em
1

pm

dpm
dξk

)
fdz

)
fdz

+ zζ̃f (z (θ))
d

dξk

{
T ′
lin

1− T ′
lin

}
zζ̃f (z (θ))

d

dξk

{
T ′
lin

1− T ′
lin

}
=

N∑
m=1

(
Ez>z(θ) (∂z∗em − ∂z∗Em)− zζ̃f (z (θ))

T ′

1− T ′ (∂z∗em − ∂z∗Em)

)
1

pm

dpm
dξk

.

The main advantage of the result below is that it provides a simple procedure to compute the change

in the tax schedule in response to supply curve shifters. As a first step, we can compute N + 1 “partial

equilibrium” responses which do not depend on the endogenous adjustment of prices dpm
dξk

. Once they are

computed, the general equilibrium response of prices and the full response of the tax schedule is simply

computed by linear algebra.

Proposition A1. Under assumption A3, the change in welfare for agent θ, dV (θ) /dξk in response to an

exogenous supply shift dξk is given by:

dV

dξk
=

n∑
m=1

∂V

∂pm

1

pm

dpm
dξk

− ∂V

∂B
∂ξkχk (ξk, Ck) ,

where ∂V
∂pm

and ∂V
∂B solve:

A27



ϵ

(1 + ϵ)2
θπ(θ)

(1− T ′)2
θ

z(θ)

d

dθ

{
∂V

∂pm

}
+ (1− tw)

∫ θ̄

θ

g
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γ
(
θ′
) ∂V
∂pm

−
∫ θ̄

θ
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(
θ′
) ∂V
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πdθ′
)
πdθ′

= − ϵ

1 + ϵ

θπ(θ)

1− T ′ (τm (θ) + ∂z∗Em) , (1− tw)
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θ
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∂V
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πdθ = 0.

ϵ

(1 + ϵ)2
θπ(θ)
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dθ
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∂V

∂pm
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g
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(
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) ∂V
∂pm

−
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θ
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(
θ′
) ∂V
∂pm

πdθ′
)
πdθ′ = 0, (1− tw)

∫ θ̄

θ

g
∂V

∂pm
πdθ = 1.

To express the equilibrium change in prices, define the vector CBand the matrix C with elements:

CB
l =

1

1− tw

∂z∗El

El
+

1

El

∫ θ̄

θ
{τl (θ) + ∂z∗El}

1

1− T ′
1

1− tw

d

dθ

{
∂V

∂B

}
ϵ
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θπ (θ) dθ
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1
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θ
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1

1− T ′
1
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d

dθ
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∂V

∂pm

}
ϵ
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θπ (θ) dθ.

Then the equilibrium change in prices dlnp
dξk

=
{

1
p1

dp1
dξk
, ..., 1

pN

dpN
dξk

}′

solves:

dlnp

dξk
= (Id+ αC)−1 (δk∂ξk lnϕk (ξk, Ck) + αCB∂ξkχk (ξk, Ck)

)
,

where δk is the column vector with 1 on its kth row and 0 otherwise.

Proof: Recall from Lemma A1 that dV
dξk

solves equation:

ϵ

(1 + ϵ)2
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∫ θ̄

θ

gγ
(
θ′
) dV
dξk

πdθ′
)
πdθ′ = − ϵ

1 + ϵ

θπ(θ)

1− T ′

n∑
l=1

(τl (θ) + ∂z∗El)
1

pl

dpl
dξk

,
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θ
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Since the equation is linear in dV
dξk

, it is direct that dVdξk =
∑N

m=1
∂V
∂pm

1
pm

dpm
dξk

− ∂V
∂B∂ξkχk (ξk, Ck) with

∂V
∂pm

,
∂V
∂B defined in the Proposition. Next, we have, using the pricing equation:

dlnpm
dξk

=
∂lnϕm
∂ξk

− α
1

Cm

dCm

dξk
,

with ∂lnϕm

∂ξk
= 0 if m ̸= k. Using the same steps in Lemma A3, we have:

1

Cm

dCm

dξk
=

1
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1
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Using dV
dξk

=
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1
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− ∂V
∂B∂ξkχk (ξk, Ck), we obtain:
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So we have:
dlnp

dξk
= (Id+ αC)−1 (δk∂ξk lnϕk (ξk, Ck) + αCB∂ξkχk (ξk, Ck)

)
,

which proves the result. □
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B Additional Quantitative Results

B.1 The Impacts of Exogenous Price Shocks

We now characterize the response of the optimal tax schedule to exogenous price shocks. As in Section

5.2, this analysis is motivated by the observed heterogeneous price changes across product categories

in the United States, with lower inflation in product categories purchased by high-income households.

For example, Jaravel (2019) documents that, for consumer packaged goods in the United States, annual

inflation is about 2.5pp lower in the top price decile (a proxy for quality), compared with the bottom

price decile.

The simulations account for feedback loops created by large price changes, and thus complement the

first-order approximations in Section 5.2. To assess the quantitative relevance for the optimal schedule,

we consider an exogenous productivity shock (to parameters γi), whose direct partial equilibrium effect

is to reduce the price of the high-quality good by 2.5% and to increase the price of the low-quality good

by 2.5%. Given our calibration for non-homotheticities, the induced change in the price index is 3.1 pp

higher in the bottom decile of the income distribution, compared with the top decile. This corresponds

to the level of inflation inequality reached over 8.5 years in U.S. data (Jaravel (2019)).

Baseline simulation. Figure A7 reports the results under the baseline parametrization. The exogenous

price shock leads to lower taxes: marginal tax rates fall by about 3.25pp at the bottom of the income

distribution, and gradually converge back to the reference tax schedule under homothetic utility, with a

fall in marginal tax rates under 0.10pp for levels of income above $300,000 (panels A and B).

To understand the mechanism, it is instructive to examine how the exogenous shocks affect equilibrium

prices. Without shocks, prices are identical to the baseline non-homothetic specification studied in Figure

5 (panel C). In partial equilibrium, the shocks would reduce the price of the high-quality good from 1.14

to 1.11 and would increase the price of the low-quality good from 0.9 to 0.92. Panel C of Figure A7 shows

the amplification of the price shocks through consumer demand, additional redistribution and returns to

scale: the equilibrium prices are 1.055 for the high-quality good and 0.96 for the low-quality goods. In

general equilibrium, the convergence of relative prices is much larger than with the partial equilibrium

shocks alone. Consequently, there is a substantial increase in the value of transferring an additional dollar

to high-income households, who have a higher marginal propensity to consume on the high-quality good

(panels D and E).

Thus, it is desirable for the planner to redistribute toward high-income households, which can be done

efficiently by reducing marginal tax rates at the bottom of the income distribution. The welfare effects

are substantial, with an equivalent variation of -6% in the bottom decile and +8.5% in the top decile,

reported in Panel F.

Sensitivity to increasing returns. Figure A8 shows the results with higher returns to scale (α = 0.4),

which magnifies the impact of the exogenous productivity change. The fall in marginal tax rates at the

bottom of the income distribution is about 12pp (panel B). The GE amplification of price changes is much

larger and flips the relative price of the high- and low-quality bundles (panel C). The distributional effects
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are large, with an equivalent variation ranging from -26% at the bottom to +24% at the top, shown in

Panel F.

Conversely, Figure shows the results with lower returns to scale (α = 0.2), which reduce the impact of

the exogenous productivity change. The fall in marginal tax rates at the bottom of the income distribution

is about 1.70pp, the GE amplification of price changes is smaller, and the distributional effects are more

modest, with an equivalent variation ranging from -2.4% at the bottom to +5% at the top.

Sensitivity to preferences for redistribution. Figure A10 documents the role of social preferences

for redistribution, setting the Pareto weights to match the optimal schedule with constant returns to scale

and a social welfare function with a CRRA coefficient of 0.5. The impact of exogenous price shocks is

much larger than in the baseline specification, with a fall in marginal tax rates of 13pp at the bottom of

the income distribution (panel B), rather than about 3pp.

To understand the mechanism, Panel C reports equilibrium prices. Before the exogenous shock,

equilibrium prices are 0.965 for the low-quality product and 1.0375 for the high-quality product (identical

to Figure 7). After the shock, the price of the low-quality product increases substantially, reaching 1.07,

while the price of the high-quality good falls to 0.955 only. The amplification of price effects is sufficiently

large to flip the relative price of the high- and low-quality bundles.

When social preferences for redistribution are low, the planner puts larger weight on the change in

utility out of disposable income for high-skill agents. Therefore, the planner is more responsive to the

initial fall in the relative price of the high-quality good and redistributes more toward the rich, which

induces a feedback loop of changes in labor supply, spending, and prices, leading to further changes in

redistribution, etc. Quantitatively, this mechanism is strong enough to flip equilibrium relative prices and

increase high-skill agents’ utility out of disposable income above 1 (panel D). As depicted on Panel F,

the shock results in a large welfare loss at the bottom of the income distribution (-32%) and substantial

welfare gains at the top (+10%).

The comparison of these results with those from Figure 7 are instructive to understand the mechanism

driving the interplay between endogenous prices, increasing returns, and social preferences for redistri-

bution. In Figure 7, weaker social preferences induced an optimal tax schedule with less redistribution

toward the poor, implying smaller changes in relative market size, and hence smaller endogenous price

changes. In that setting, absent exogenous shocks, weaker social preferences for redistribution reduce the

importance of non-homotheticities for the optimal tax schedule, because prices change less. Introducing

exogenous price shocks, Figure A10 shows that the response to price shocks is magnified with weaker

social preferences, which induce more redistribution toward those with a higher propensity to spend on

the cheaper products, which amplifies the exogenous shocks and leads to larger changes in equilibrium

prices.

Overall, the results show that exogenous price shocks can have a large impact on the optimal tax

schedule, and that there are important amplification effects through increasing returns and the endogenous

social value of redistribution. In all simulations, a unifying mechanism operates: changes in equilibrium

prices and the distribution of marginal propensities to consume govern the change in the optimal tax

schedule.
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B.2 The Response of the Tax Schedule to Exogenous Shifts in the Skill Distribution

In this section, we characterize quantitatively the optimal response of the tax schedule to exogenous shifts

in the income distribution, accounting for the endogenous response of prices. Using the publicly available

statistics on the income distribution from the U.S. Census, we recover the shifts in the skill distribution

from the observed shifts in the income distribution from 2004 to 2015.2 Empirically, income is stagnant

at the bottom of the distribution, and increases at faster and faster rates with higher incomes.

Partial and general equilibrium results. Using the theoretical results in Appendix C.2 of our

working paper (Jaravel and Olivi, 2024), Figure A11 reports the optimal response of marginal tax rates.

We first consider the direct, partial equilibrium response to the change in the skill distribution, with

fixed prices. As characterized in our working paper, as the income distribution becomes more spread out,

the value of redistribution at higher incomes falls, which pushes for a more redistributive tax schedule,

with higher marginal tax rates. Because of the shifts in the skill distribution, there is relatively more

mass at the top and bottom of the skill distribution, hence the distortionary cost of taxation is higher

in this range, while it is reduced in the middle of the distribution. To increase redistribution efficiently,

it is therefore optimal to raise marginal tax rates especially in the middle of the income distribution.

Thus, Figure A11 shows that optimal marginal tax rates increase by about 2.5pp at the bottom of the

distribution, by about 5pp in the middle, and by 1pp at the very top.

Furthermore, general equilibrium effects are at play through prices, as characterized in Proposition

4. The direct effects on prices of the shifts in inequality is amplified through income and substitution

effects, as well as changes in optimal tax rates. These effects tend to reduce optimal tax rates, because

the observed shift in the income distribution lowers the price of products with a high income elasticity.

Because higher-income agents have a higher marginal propensity to spend on these goods, it is optimal to

redistribute more toward them by lowering marginal tax rates, through the same channels as in Section

4.2. Quantitatively, with σ = 0.6 optimal tax rates are reduced by a few percentage points, relative to

the optimum in partial equilibrium, throughout the distribution. The fall in marginal tax rates is larger

with σ = 2, reaching about -4pp at the bottom of the distribution. In this case, marginal tax rates fall

below the observed tax schedule at the bottom of the income distribution.

Finally, Figure A11 also shows the combined impact of the shift in the skill distribution and exogenous

changes in prices. Price changes are measured from 2004 to 2015 as in Section 5.2, except that the

estimation accounts at the same time for the shift in the skill distribution and the induced price changes,

i.e. we estimate the “residual” price shocks to match observed price changes. Taking into account these

residual price shocks leads to a substantial reduction in optimal tax rates at the bottom of the distribution.

Indeed, as in Section 5.2, price shocks increase the value of redistribution at the top. Quantitatively, the

direct price effects, which imply more redistribution toward higher-skill agents, more than offset the

motive for increased redistribution toward low-skill agents from the shift in the skill distribution. Taking

into account all effects, the optimal tax schedule becomes less redistributive. These results show that it

is important to jointly study shifts in the skill distribution and price shocks.

2We use the historical series available at https://www.census.gov/data/tables/time-series/demo/income-
poverty/historical-income-households.html (Table H-2).
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The role of non-linear social preferences. Figure A12 shows the role of the curvature of the social

welfare function. Both with exogenous prices (panel A) and endogenous prices (panels B and C), the

response of the tax schedule is muted by additional curvature. Indeed, curvature tends to mute the motives

for redistribution created either directly by the shift in the skill distribution or by the endogenous price

response. We find that the changes in the optimal tax schedule remain substantial even with non-linear

social welfare functions.
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C Additional Figures and Tables

Figure A1 The Response of the Optimal Tax Schedule to a Change in the Price of Luxuries relative to
Necessities, Key Channels

ൗ
𝐷ℎ

𝐷𝑙
↓

Optimal to increase redistribution 
from rich to poor: taxes ↑ 

Social value of redistribution 
from rich to the poor ↑ 

Efficiency cost of 

taxing the rich ↓ 

Relative price change:

ൗ
𝑃ℎ

𝑃𝑙
↑

Fall in aggregate demand for 
luxuries relative to necessities

Channel #1
The rich can buy 

less with one 
more dollar

Channel #2
A dollar transfer 
disincentivizes labor 
supply for the rich 
due to income effects

Channel #7
Prices adjust through 
increasing returns to scale

Channel #3
Consumers substitute 

away from luxuries

Channel #4
The rich reduce their 

consumption by more 
because of income effects

Channel #6
With higher taxes, aggregate 
labor supply and income fall

Channel #5
With more redistribution, 

demand from the poor 
increases

Supply Shock

Partial Equilibrium

General Equilibrium

Notes: This table summarizes the key theoretical channels in our model whereby price shocks affect optimal taxation.
We consider an increase in the price of luxuries, denoted h, relative to necessities, denoted n. The figure reports
the two partial equilibrium channels characterized in the main test (Channels #1 and #2). It also reports five
channels that operate in general equilibrium. First, households reallocate their spending to other products through
standard substitution effects, leading to a fall in demand for luxuries (Channel #3). Second, a relative increase
in the price of luxuries has a negative income effect on higher income households, as luxuries constitute a larger
portion of their consumption basket. Higher income households have a higher propensity to spend on luxuries, so
the aggregate share of luxuries decreases through income effects (Channel #4). Moreover, there are several changes
in optimal taxes. Through the partial equilibrium channels #1 and #2, it becomes more valuable to redistribute to
lower income households: tax rates increase along the income distribution. Income is reallocated to lower income
households, which amplifies the decline in the share of luxuries (Channel #5). In addition, by increasing tax rates,
the planner lowers labor supply in the aggregate. As households’ aggregate real income decreases, they shift their
consumption towards necessities, which further amplifies the fall in the share of luxuries (Channel #6). Therefore,
in general equilibrium the markets for luxuries shrink relative to other markets, and the relative price of luxuries
increases further through a supply side response (Channel #7). These endogenous price changes induce further
rounds of changes in optimal taxes, labor supply and relative prices, as illustrated graphically with the feedback
loop in the figure. The government thus amplifies both the inflation of luxuries prices and their redistributive
impact through changes in optimal tax rates.
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Figure A2 Inflation Inequality in the United States, 2004-2015, CEX-CPI Data

A. Raw Price Changes B. Relative Price Changes
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Notes: Panel A of this figure reports Laspeyres inflation rates across the income distribution between 2004 and
2015, considering 248 product categories observed in CEX-CPI data. Panel B reports the same patterns after
demeaning price changes. We use the changes in relative prices reported in Panel B for the quantitative analysis
in Section 5.2, since the relative price effect is central to our analysis while the uniform price change simply scales
real wages and has limited interaction with consumption heterogeneity.

Figure A3 Inflation Inequality in the United States, 2004-2015, Nielsen Data

A. Raw Price Changes B. Relative Price Changes
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Notes: Panel A of this figure reports Laspeyres inflation rates across the income distribution between 2004 and
2015, using the Nielsen data. We use the 994 most detailed product categories, called “product modules” and
report inflation rates with and without the correction for changes in product variety. Through consumers’ love-of-
variety, average inflation is significantly lower when allowing for changes in product variety. Panel B reports the
same patterns after demeaning price changes. We use the changes in relative prices reported in Panel B for the
quantitative analysis in Section 5.2, since the relative price effect is central to our analysis while the uniform price
change simply scales real wages and has limited interaction with consumption heterogeneity.
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Figure A4 Willingness to Pay for Price Change vs. Optimal Tax Response

Notes: In this figure, the willingness to pay for the reform for a household with post tax income z∗ is defined as WTP (z∗) =
−
∑n

k=1 sk (z
∗) p̂k − dT (z) /z∗. p̂k denotes the exogenous price change, while dT (z) is the change in tax. Since a change

in prices affects labor supply and therefore how much revenue is collected from the income tax, we decompose dT (z) =
dTp (z) + dTr (z). The planner rebates to the households the change in revenue arising from the change in prices, dTp, in a
lump sum fashion, and implements the optimal tax change dTr (z). We decompose the willingness to pay into WTPp (z

∗) =
−
∑n

k=1 sk (z
∗) p̂k − dTp (z) /z

∗, the welfare impact of the reform due to prices only, and WTPr (z
∗) = −dTr (z) /z

∗, the
welfare impact of the change in taxes.

Figure A5 Sensitivity Analysis for the Response to Observed Price Shocks (2004-2015), CEX-CPI data
Results with Labor Supply Elasticity ε = 0.33

A. σ = 0.6 B. σ = 2

Notes: in all specifications, the IRS parameter is set to α = 0.3 and the labor supply elasticity to ε = 0.33. The
CEX-CPI dataset is used in both panels and the initial tax schedule is taken from Hendren (2020).
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Figure A6 Returns to Scale and the Optimal Tax Schedule,
Sensitivity to Parameter Values

A. α = 0.3, ε = 0.21, CRRA=0.5
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B. α = 0.3, ε = 0.33, CRRA=1
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C. α = 0.3, ε = 0.21, CRRA=0.5
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Notes: This figure plots optimal marginal tax rates under constant returns to scale (CRS, α = 0) and increasing returns to
scale (IRS, α = 0.3). With increasing returns, the “naive” correction uses the formula 1− T ′

NAIV E(θ) =
1

1−α
(1− T ′

CRS(θ)).
The optimal tax schedule solves the full optimization problem, accounting for endogenous changes in the value of redistribution
across the income distribution. The three panels consider different values for the labor supply elasticity and social preferences
for redistribution.
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Figure A7 The Response of the Optimal Tax Schedule to Productivity Shocks
(α = 0.3, εz = 0.21, Pareto from SWF CRRA=1, PE price low-quality +2.5%, PE price high-quality -2.5%)

A. Optimal MTRs Before vs. After Price Shocks B. Difference b/w MTRs
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E. ∂ṽ/∂z∗ ·G′(θ) by Earned Income F. EV , initial vs. new schedules
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Notes: The quantitative model uses Pareto weights computed at the optimal homothetic tax schedule obtained
under a social welfare function with CRRA=1. The exogenous productivity changes are such that the partial
equilibrium price of the low-quality bundle increases by 2.5% while the partial equilibrium price of the high-quality
bundle decreases by 2.5%.
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Figure A8 Higher Returns to Scale Magnify the Impact of Productivity Shocks
(α = 0.4, εz = 0.21, Pareto weights from SWF CRRA=1, PE price low-quality +2.5%, PE price high-quality

-2.5%)

A. Optimal MTRs Before vs. After Price Shocks B. Change in MTRs
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E. ∂ṽ/∂z∗ ·G′(θ) by Earned Income F. EV , Initial vs. New Tax Schedules
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Notes: The quantitative model uses Pareto weights computed at the optimal homothetic tax schedule obtained
under a social welfare function with CRRA=1. The exogenous productivity changes are such that the partial
equilibrium price of the low-quality bundle increases by 2.5% while the partial equilibrium price of the high-quality
bundle decreases by 2.5%.
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Figure A9 Lower Returns to Scale Reduce the Impact of Productivity Shocks
(α = 0.2, εz = 0.21, Pareto weights from SWF CRRA=1, PE price low-quality +2.5%, PE price high-quality

-2.5%)

A. Optimal MTRs Before vs. After Price Shocks B. Change in MTRs
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E. ∂ṽ/∂z∗ ·G′(θ) by Earned Income F. EV , Initial vs. New Tax Schedules
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Notes: The quantitative model uses Pareto weights computed at the optimal homothetic tax schedule obtained
under a social welfare function with CRRA=1. The exogenous productivity changes are such that the partial
equilibrium price of the low-quality bundle increases by 2.5% while the partial equilibrium price of the high-quality
bundle decreases by 2.5%.
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Figure A10 Lower Social Preferences for Redistribution Magnify the Impact of Productivity Shocks
(α = 0.3, εz = 0.21, Pareto weights from SFW CRRA=0.5, PE price low-quality +2.5%, PE price high-quality

-2.5%)

A. Optimal MTRs Before vs. After Price Shocks B. Change in MTRs
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E. ∂ṽ/∂z∗ ·G′(θ) by Earned Income F. EV , Initial vs. New Tax Schedules
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Notes: The model uses Pareto weights computed at the optimal homothetic tax schedule obtained under a social
welfare function with CRRA=0.5. The exogenous productivity changes are such that the partial equilibrium price
of the low-quality bundle increases by 2.5% while the partial equilibrium price of the high-quality bundle decreases
by 2.5%.
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Figure A11 The Response of the Optimal Tax Schedule to Observed Shifts in the Skill Distribution
(2004-2015)

A. σ = 0.6 B. σ = 2
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Notes: the IRS parameter is set to α = 0.3 and the labor supply elasticity to ε = 0.21; the U.S. Census and
CEX-CPI data sets are used in both panels and the initial tax schedule is taken from Hendren (2020).
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Figure A12 The Response of the Optimal Tax Schedule to Observed Shifts in the Skill Distribution
(2004-2015),

The Role of the Curvature of the Social Welfare Function

A. Exogenous prices

B. Endogenous prices, σ = 0.6 C. Endogenous prices, σ = 2

Notes: the IRS parameter is set to α = 0.3 and the labor supply elasticity to ε = 0.21; the CEX-CPI data set is
used in both panels and the initial tax schedule is taken from Hendren (2020).
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Table A1 Notation for Model

Indices θ Agent productivity

k Sectoral index

Prices, Quantities, pk Producer price index in sector k

Expenditures ξk Cost shifter for producer price index in sector k,

qk Consumer price index in sector k

Ck Aggregate demand for sector k

ck Household demand for sector k

E Aggregate spending

Ek Aggregate spending on sector k

∂z∗Ek Average marginal propensity to spend on k

ek Household spending on sector k

s̄k Aggregate spending share on k

Elasticities αk Elasticity of price pk to market size Ck

σ Elasticity of substitution between sectors

S Matrix of price elasticities

ζ Compensated labor supply elasticity

ζ̃
Compensated labor supply elasticity corrected

for non-linearities in the tax schedule

η Income effect with a linear budget constraint

η̃ Income effect corrected for nonlinearities in the tax schedule

Incomes z Pre-tax income

z∗ Post-tax income

Social preferences g Pareto weight

Notes: This table lists the notation used for our model. The elasticity of substitution σ is relevant only for the two-sector
model in the main text.
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D Quantitative Model and Solution Algorithm

This section describes our quantitative model and solution algorithm. We first describe the economic

environment. We then describe consumer preferences, contrasting the homothetic specification with non-

homothetic preferences. Third, we describe the social planner’s problem and the ordinary differential

equations (ODEs) characterizing the solution. Finally, we present the solution algorithm for the ODEs.

D.1 Setting

D.1.1 Indirect Utility Function

The quantitative model uses a standard additively separable specification:

U (z∗, z,p, θ) = v (z∗,p)− ψ
(z
θ

)
(A4)

ψ
(z
θ

)
=

1

1 + 1
εz

(z
θ

)1+ 1
εz (A5)

where ψ
(
z
θ

)
is the cost of earning z given ability θ, and v (z∗,p) is the indirect utility function given

prices and disposable income.

D.1.2 Pricing Function

Denoting aggregate consumption by Ci, the quantitative model is based on an isoelastic pricing function:

pi = γiC
−α
i ∀i ∈ I (A6)

We calibrate γi to fit prices at the observed schedule, which are normalized to one without loss of generality,

using the relationship:

γi ≡ p0,iC
α
0,i (A7)

where C0,i is aggregate quantity consumed in sector i at initial prices. To obtain observed consumption,

we compute disposable income at the observed schedule as defined in D.1.3, and then compute sectoral

consumption given the expenditure shares described in D.2.1 and D.2.2.

D.1.3 Skill Distribution

The skill distribution f(θ) plays a key role in the shape of the optimal tax schedule. We use data from

Hendren (2020) on the observed tax schedule to calibrate the skill distribution. As the data is only

available for each percentile of the observed income distribution, we interpolate for marginal tax rates at

income levels within the observed bounds using p-chip interpolation.

We then create a mapping from earned income at the observed tax schedule to skill type θ. Following

Saez (2001), we obtain this mapping using the individual’s utility function described in D.1.1, which

depends on the functional form of v (z∗,p). We use two alternative forms of this indirect utility function

- homothetic as described in D.2.1 and non-homothetic as described in D.2.2.
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At the observed schedule in the homothetic case, we fit the skill distribution after setting: pobs =

p0 ≡ 1. When computing income at the observed schedule in case of non-homothetic preferences, we use

the “deflator” as defined in Definition 1 below. When we apply the deflator at any initial prices p0 the

indirect utility of the agent will always be the same as in the homothetic case with p0 = 1. This approach

allows us to use the same skill distribution in the homothetic and in non-homothetic cases.

D.2 Consumer Preferences

This section describes the indirect utility function v (z∗,p) from D.1.1.

D.2.1 Homothetic Preferences

With homothetic preferences, the indirect utility function v (z∗,p) described in D.1.1 is given by:

v (z∗,p) ≡ z∗

p
(A8)

where p is the price in the economy. The individual’s utility function, per equation A4, is:

U (z∗, z,p, θ) =
z∗

p
− ψ

(z
θ

)
=
z∗

p
− 1

1 + 1
εz

(z
θ

)1+ 1
εz (A9)

Plugging in the definition of disposable income, the optimal z(θ) satisfies the FOC:

dU (θ)

z(θ)
=

1− T ′(z(θ))

p
−
(
z(θ)

θ

) 1
εz 1

θ
= 0

We can thus express income or skill parameters as functions of observables:

z(θ) = θ1+εz

(
1− T ′(z(θ))

p

)εz

(A10)

θ =

[
z

(
p

1− T ′(z)

)εz] 1
1+εz

(A11)

With θ = 0, we apply the limiting case described in D.3.2.

D.2.2 Non-Homothetic CES Preferences

Definitions and Properties We use the General Non-Homothetic CES Preferences as defined in

Appendix A.1 of Comin, Lashkari and Mestieri revision 3 (2019). The indirect utility function v (z∗,p)

described in D.1.1 is given by v ≡ v (z∗,p) ≡ F (C), where C is the consumption vector of the agent.

Indirect utility v is implicitly defined by:

∑
i∈I

Ω
1
σ
i

(
Ci

v
εi

1−σ

)σ−1
σ

=
∑
i∈I

(Ωiv
εi)

1
σ C

σ−1
σ

i = 1, (A12)

where parameters εi denote the utility elasticities of each good, the elasticity of substitution between
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sectors is denoted σ , and taste parameters are denoted Ωi, for an arbitrary set of sectors i ∈ I. For the
quantitative analysis, we consider two sectors, labeled “high quality” (H) and “low quality” (L).

Under this specification, Marshallian Demand (spending shares) and the price index are:

ωi(z
∗) = Ωi

(pi
P

)1−σ
(
z∗

P

)εi−(1−σ)

(A13)

P (p, z∗) =

[∑
i∈I

(
Ωip

1−σ
i

)χi
(
ωi (z

∗)1−σ
)1−χi

] 1
1−σ

(A14)

where χi ≡
1− σ

εi

Using this specification, we obtain quantity consumed as:

Ci(z
∗) =

ωi(z
∗)z∗

pi
(A15)

Definition of Deflated Non-Homothetic Indirect Utility Function In the social planner’s prob-

lem in D.3.1, we use a deflated indirect utility function.

Definition 1 (Deflated Indirect Utility Function) Deflated indirect utility function ṽ(z∗,p) is the

inverse of the indirect utility function at initial prices, under constant returns to scale. It can be thought

of as the level of “virtual disposable income” z̃∗ that satisfies v(z̃∗,p0) = v(z∗,p). Formally,

ṽ(z∗,p) = v−1(v(z∗,p),p0) (A16)

Properties of the deflated indirect utility function are listed below. At p0, the non-homothetic indirect

utility is equivalent to the homothetic case from D.2.1:

dṽ(z∗,p)

dz∗
=
dv(z∗,p)

dz∗

(
dv(z̃∗,p0)

dz̃∗

)−1

where: (A17)

z̃∗ = v−1(v(z∗,p), p),p0)

ṽ(z∗,p0) = z∗ (A18)

dṽ(z∗,p0)

dz∗
= 1 (A19)

D.3 ODEs from Social Planner’s Problem

D.3.1 Social Planner’s Problem

The social planner chooses the optimal tax schedule to maximize total utility over the distribution of

types θ, subject to budget constraint, agents’ FOC and market clearing, according to an arbitrary social
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welfare function G (U(θ,p)):

maxz(θ)

∫ θ

θ
G (U(θ,p)) f(θ)dθ s.t : (A20)

G (U(θ,p)) = G

(
ṽ (z∗(θ),p)− ψ

(
z(θ)

θ

))
(A21)

G′ (U(θ,p)) =
dG

dU
(A22)

R ≥
∫ θ

θ
(z(θ)− z∗(θ)) f(θ)dθ (A23)

pi = γi
(
Ci

)−α
,∀i (A24)

where:

1. Ci =
∫ θ
θ Ci(θ)dF (θ) denotes aggregate consumption in sector i

2. R denotes the government surplus (government revenue requirement)

3. The state variable is G(U(θ,p)) and the control variable is z(θ)

Using the envelope theorem and our functional form for U , we can write:

U̇(θ) =
1

θ

(z
θ

)1+ 1
εz (A25)

Call µ(θ) the co-state variable for the evolution of G(·). The equation for µ is

µ̇(θ) =

(
(1− α)

λ
dṽ
dz∗

−G′ (U(θ))

)
f(θ), (A26)

where

• dṽ
dz∗ is the derivative of deflated indirect utility ṽ with respect to disposable income, evaluated at

the level of disposable income z∗ (which we express below as a function of θ, U and µ)

• λ is the multiplier on the government’s budget constraint

The first-order condition for z gives:

µ(θ) ·

(
1 + 1

εz

θ2

(z
θ

) 1
εz

)
= −λ

1−
(1− α) ·

(
z
θ

) 1
εz

θ · dṽ
dz∗

 f(θ) (A27)

µ(θ) = θ2
λ

(
(1− α)

1
θ (

z
θ )

1
εz

dṽ
dz∗

− 1

)
f(θ)(

1 + 1
εz

) (
z
θ

) 1
εz

(A28)
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The boundary conditions are:

µ(θ) = 0

µ(θ) = 0

The government resource constraint in equation (A23) results from the fact that government revenue

is distributed among the agents in the economy through a lump sum transfer such that an amount R is

not redistributed. With R denoting government surplus, we have

C =

∫
C(θ) dF (θ) =

∫
C(z∗(θ)) dF (θ) =

∫
z∗(θ)

p
dF (θ) =

∫
z(θ)−R

p
dF (θ) (A29)

D.3.2 Limiting Case

We need to address the case when θ = 0 since several equations from D.3.1 become indeterminate. We

have

ζ(θ) ≡ 1

θ

(
z(θ)

θ

) 1
εz

(A30)

ℓ(θ) ≡ z(θ)

θ
= (θζ(θ))εz (A31)

These two functions are bounded functions of θ near 0. Using equation (A27) and the definitions above

we can express:

ζ(θ) =

[
1− α

dṽ
dz∗

− µ(θ)

θ

1 + 1
εz

λf(θ)

]−1

(A32)

U̇(θ) = ζ(θ)ℓ(θ) (A33)

We still need to address the fact that µ(θ)
θ is undefined for θ = 0. Given our specification we know that:

f(0) > 0

µ̇(0) < 0

µ(θ) < 0 θ → 0+

Therefore we can use:

lim
θ→0

µ(θ)

θ
= µ̇(θ) =

(
(1− α)

λ
dṽ
dz∗

−G′ (U(θ))

)
f(θ) (A34)
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Using these relationships we can express several of our key variables for θ = 0:

U̇(0) = 0 (A35)

z(0) = 0 (A36)

ψ(
0

0
) = 0 (A37)

ζ(0) =

[
1− α

dṽ
dz∗

− µ̇(0)
1 + 1

εz

λf(0)

]−1

(A38)

D.3.3 System of ODEs

The solution to the general case allowing for non-homotheticities in agents’ utility function and an arbi-

trary social welfare functionG(U(θ,p)) is given by the following system of ODEs and boundary conditions:

U̇(θ) =
z

θ2

(z
θ

) 1
εz (A39)

µ̇(θ) =

(
(1− α)

λ
dṽ
dz∗

−G′ (ṽ − ψ)

)
f(θ) (A40)

µ(θ) = θ2
λ

(
(1− α)

1
θ (

z
θ )

1
εz

dṽ
dz∗

− 1

)
f(θ)(

1 + 1
εz

) (
z
θ

) 1
εz

(A41)

with the boundary conditions:

µ(θ) = 0

µ(θ) = 0

Furthermore, we can express incomes as a function of other variables:

z = θ ·

(
1− α

θ · dṽ
dz∗

− µ(θ)

λf(θ)
·
1 + 1

εz

θ2

)−εz

(A42)

z∗ = ṽ−1
(
U(θ) + ψ

(z
θ

))
= ṽ−1

(
U(θ) +

1

1 + 1
εz

(z
θ

)1+ 1
εz

)
(A43)

This is a system of non-linear equations we can solve for to obtain z and z∗ given θ, U(θ), µ(θ), λ. We

apply the limit case as per D.3.2.

Homothetic Case With homothetic indirect utility, the system of ODEs can be expressed as:
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U̇(θ) =
z

θ2
·
(z
θ

) 1
εz

µ̇(θ) =

(
(1− α) · λ · p−

(
z∗

p
− ψ

)−σ̃
)

· f(θ)

µ(θ) = θ2
λ
(
p(1− α)1θ

(
z
θ

) 1
εz − 1

)
f(θ)(

1 + 1
εz

) (
z
θ

) 1
εz

z = θ ·

 −θ2λf(θ)

µ(θ)
(
1 + 1

εz

)
− θλ(1− α)f(θ)p

εz

z∗ = p ·

(
U(θ) +

1

1 + 1
εz

·
(z
θ

)1+ 1
εz

)

with boundary conditions:

µ(θ) = 0

µ(θ) = 0

D.3.4 Social Welfare Function

To study the role of non-linearities in the social welfare function, we consider a specification with constant

relative risk aversion, where the CRRA risk parameter is denoted σ̃. The functional form is:

G′ (U(θ,p)) =
dG

dU
= (U(θ,p))−σ̃ , σ̃ ≥ 0 (A44)

G (U(θ,p)) ≡

log (U(θ,p)) if σ̃ = 1

(U(θ,p))1−σ̃

1−σ̃ if σ̃ ≥ 0 ∧ σ̃ ̸= 1
(A45)

D.3.5 Pareto Analysis

We also perform analysis using Pareto weights, denoted λ(θ) and set to match the results obtained with

the CRRA social welfare function G(·), with the CRRA risk parameter σ̃. The Pareto weight are given

by:

λ(θ) ≡ (Uoptim(θ))−σ̃ , (A46)

where Uoptim(θ) is the solution of the optimal taxation problem with homothetic indirect utility function,

α = 0, and the CRRA parameter σ̃.

With Pareto weights, the social welfare function and its derivative become:

G (θ) ≡ λ(θ)U(θ,p), (A47)

G′ (θ) =
dG

dU
= λ(θ). (A48)
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D.3.6 Defining the Equivalent Variation

The equivalent variation (EV) is defined by:

ṽ
(
z∗ref (θ) + EV (θ),pref

)
− ψ

(
zref (θ)

θ

)
= uoptim(θ),

where “ref ” denotes the reference point and “optim” the new equilibrium. In our main specifications,

the reference point is the outcome at the optimal tax schedule with homothetic preferences, to which we

compare the outcome with non-homothetic preferences.

D.4 Solution Algorithm

This section describes the algorithm to solve the problem described in D.3.1, using nested bisection in

Matlab.

D.4.1 Convergence to Optimal Schedule

The algorithm relies on three nested loops. Each loop ensures that we satisfy one of the conditions in the

social planner’s problem (see D.3.1); we guess the value of one parameter in each loop, and then solve for

all inner loops.

The loops are structured as follows, from the outer loop to the inner loop:

1. Price loop - ensures prices in the economy converge such that equation (A24) is satisfied by guessing

p. The convergence condition is base on the price change.

2. Surplus loop - ensures government surplus equation (A23) converges by guessing a value of λ. The

convergence condition is the distance from the revenue requirement.

3. Utility or µ loop - ensures that the boundary condition µ(θ) = 0 is satisfied by guessing value of

U(θ). The convergence condition is the distance between µ(θ) and the boundary condition of 0.

We set a convergence condition (tolerance) for each loop, which determines whether the variable of interest

has converged. In what follows, ϵp, ϵλ, ϵµ denote tolerance for price, surplus and utility loops, respectively.

In the description of the algorithm below, for any variable the indexes represent the iteration of price,

surplus and utility loop, respectively. The optimal schedule is defined by poptim, λoptim and Uoptim(θ),

denoting the values under which the variable determining convergence of each loop converged.

For illustration, assume the values of counters at convergence were 3 for price, 7 for surplus and 10

for utility. Then, the optimal value of utility is denoted U3,7,10(θ), which is the value used to solve the

ODE in the 10th utility loop, within the 7th surplus loop, within the 3rd price loop.
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Thus, the optimal schedule can be defined as:

poptim = p10 = p such that (A49)

ϵp ≥ 1

p

(
γ

∫ θ

θ
C (z∗(θ;p, λoptim, Uoptim(θ))) dF (θ)− p

)
where (A50)

λoptim = λ3,7 = λ such that (A51)

ϵλ >

∣∣∣∣∣
∫ θ

θ
z(θ;p, λ, Uoptim(θ))− z∗(θ;p, λ, Uoptim(θ))f(θ)dθ −R

∣∣∣∣∣ where (A52)

Uoptim(θ) = U3,7,10(θ) = U(θ) such that (A53)

ϵµ >
∣∣µ(θ;p, λ, U(θ))

∣∣ (A54)

D.4.2 Adjustment of Bounds

In the bisection algorithm, we update the bounds at the end of each iteration of loop based on the value

of the variable of interest. In the case of the utility or µ loop, we change bounds on U(θ) according to

the rule:

UUB(θ) = Ucurrent(θ) if µ(θ) < 0 or the solver failed

ULB(θ) = Ucurrent(θ) if µ(θ) ≥ 0

In the case of the surplus loop, we change bounds on λ according to the rule:

λUB = λcurrent if

∫ θ

θ
(z(θ)− z∗(θ)) f(θ)dθ ≥ R

λLB = λcurrent if

∫ θ

θ
(z(θ)− z∗(θ)) f(θ)dθ < R
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E Extensions

In this section, we present extensions of our theoretical results under general household preferences and

supply side specification. We first present the general model, then the extensions of Proposition 1-4.

E.1 Model

We consider a n-sector economy, sectors are indexed by k. There is a mass 1 of households with different

productivity types θ distributed according to π(θ).

Households. Preferences are weakly separable between goods and leisure. Given consumer prices

{qk}1≤k≤n and the income tax schedule T , a household of type θ solves:

V (θ) = sup
{c1,...,cn,z}

U (u (c1, ..., cn) , z, θ) , (A55)

s.t.

N∑
k=1

qkck = z − T (z) .

Where the functions U and u are increasing, strictly concave and three times continuously differentiable.

We assume that all functions are C3 to ensure that consumption functions are twice continuously differ-

entiable in prices and post-tax income. Indeed, we first have, by concavity of the utility functions, that

the optimal consumption choice at a given z and θ is unique and characterized by the problem first order

conditions. A direct application of the implicit function theorem then directly shows that the consump-

tion functions ck are C2 functions of prices and post tax income.

We define the sub-utility of consumption v (q, z∗) as the solution of:

v (q, z∗) = sup
{c1,...,cn}

u (c1, ..., cn) s.t.
N∑
k=1

qkck = z∗.

The unique optimal choice of consumption allocation across sector ck (q, z
∗) is independent of type con-

ditional on {q, z∗}.

To discipline how preferences depend on type, we make the standard assumption that preferences satisfy

the single crossing property.

Assumption. Single Crossing Property. For any z∗, z and q, the marginal rates of substitutions

−Uz (v (q, z
∗) , z, θ) / (Uv (v (q, z

∗) , z, θ) vz∗ (q, z
∗)) are decreasing in type.

It is well known in the mechanism design literature that the assumption allows us to simplify the set

of incentive compatibility constraints in the direct allocation of z (θ) , z∗ (θ) ( U (v (q, z∗ (θ)) , z (θ) , θ) ≥
U (v (q, z∗ (θ′)) , z (θ′) , θ)) into a local constraint and monotonicity condition on z (θ).
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We finally provide definitions for standard demand functions and labor supply elasticities.

Definition E.1. The expenditure function of the sub-utility problem is defined as

e (q, v) = inf
{c1,...,cn}

n∑
k=1

qkck s.t. u (c1, ..., cn) ≥ v.

The corresponding Hicksian demand function is defined as chk (q, v) = ∂qke (q, v), the aggregate substi-

tution matrix is defined as Sk,l = ql
∫
∂qlc

h
k (q, v (q, z (θ)− T (z (θ))))π (θ) dθ/Ck. The marginal rate of

substitution is given by MRS(z∗, z, θ,q) ≡ −Uz (v (q, z
∗) , z, θ) / (Uv (v (q, z

∗) , z, θ) vz∗ (q, z
∗)). We define

the linear compensated wage elasticity as ζ =MRS/ (z∂zMRS + zMRS∂z∗MRS), and the elasticity ad-

justed for non linearity in the tax schedule as ζ̃ = ζ/ (1 + zζT ′′/ (1− T ′)). The linear income effect is

defined as η = −zζ ∂z∗MRS and the adjusted income effect as η̃ = −zζ̃ ∂z∗MRS.

Firms. As in the main text, we summarize the supply side of the economy through a cost function

and a pricing function. The cost function in sector k is χk (C1, ..., Cn, ξk), while the pricing function is

pk = ϕk (C1, ..., Cn, ξk). The main difference with our specification in the main text is that we now allow

for spillovers across sectors (an increase in demand for good l affects the price of good k). As before, we

will consider two cases. In the competitive case, ϕk (C1, ..., Cn, ξk) =
∑n

l=1 ∂Ck
χl (C1, ..., Cn, ξk); in the

monopolistic case, χk (C1, ..., Cn, ξk) = Ckϕk (C1, ..., Cn, ξk).

With these more general pricing functions, we need to define the elasticities of price with respect to

any increase in aggregate demand. We do so in the definition below:

Definition E.2. The price elasticity of pk with respect to market size Cl is defined as

Ak,l ≡ −Cl∂Cl
ϕk (C1, ..., CN , ξ) /pk.

Planning Problem. The government maximizes a social welfare function
∫
G(V (θ), θ)π(θ)dθ with G

increasing and concave in V using a nonlinear income tax T, taxes on consumption prices qk and a full

profit tax, subject to the firm and household problem defined above.

sup
T,qk

∫
G(V (θ), θ)π(θ)dθ

s.t. V (θ) = sup
z
U (v (q, z − T (z)) , z, θ) and

∫
T (z(θ))π(θ)dθ +

n∑
k=1

qkCk − χk (C1, ..., Cn, ξk) ≥ 0

with V (θ) = U(v(θ), z(θ), θ), v(θ) = u(c1(q, z
∗(θ)), ..., cn(q, z

∗(θ))), and z∗(θ) = z − T (z)

Ci =

∫
ci(q, z

∗(θ))π(θ)dθ,

where the consumption function solves c (q, z∗) = argmaxcu (c) s.t. q · c = z∗. Given our single crossing

condition, the planner’s problem can be re-expressed as a direct mechanism, with the additional condition
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that z(θ) is non decreasing in types:

sup
V (θ),z(θ),qi

∫
G(V (θ), θ)π(θ)dθ

s.t. V ′(θ) = Uθ(v(θ), z(θ), θ) and

∫
z∗(θ)− z(θ)π(θ)dθ −

n∑
k=1

qkCk − χk (C1, ..., Cn, ξk) ≤ 0

with V (θ) = U(v(θ), z(θ), θ), v(θ) = u(c1(q, z
∗(θ)), ..., cn(q, z

∗(θ))), and z∗(θ) = q · c(q, z∗(θ))

Ci =

∫
ci(q, z

∗(θ))π(θ)dθ,

where v is the indirect sub-utility for consumption ci denotes demand for i and z∗ post-tax income.

E.1.1 Micro-foundations of the Supply Side

While our specification of the supply side of the economy through a cost and pricing function is fully

general in the competitive case, it might not be obvious which monopolistic frameworks it encompasses.

In this subsection, we give micro-foundations for our reduced-form specification and argue that it covers

a large class of models of free entry with monopolistic competition.

In each sector k, monopolistic producers can freely enter and produce differentiated varieties yk (i) of

product k. These firms are indexed by i ∈ Ik and firm i sells its variety at price pk (i) . These varieties are

then aggregated by competitive retailers. Competitive retailers bundle the varieties with a constant return

to scale production function Fk, which is increasing, concave, homogeneous of degree 1and symmetric in

its arguments. The retailer’s problem is given by:

sup
Yk,{yk(i)}j∈Ik

pkYk −
∫
i∈Ik

pk (i) yk (i) di s.t. Fk

({
yk (i)

Yk

}
j∈Ik

)
= 1.

Given that Fk is homogenous and that retailers are competitive, we have pk =
∫
i∈Ik pk (i) yk (i) /Ykdi,

and demand for variety i is given by yk (i) = dk

(
pk (i) , {pk (j)}j∈Ik

)
Yk. On the production side, firms

can freely enter all markets. Upon entering, firm i pays a fixed labor cost ξe,k and draws its productivity

type γ (i) from a distribution Ψk. To start production, firms have to pay a second fixed cost, ξp,k. Firms

use both labor ℓ and other sectors output ỹl to produce (through Input-Output linkages). The variable

cost of producing yk (i) units of variety i in market k, χk is defined by the following problem:

χk (i) = inf
{ỹ1,...,ỹn,ℓ}

n∑
k=1

pkỹk + ℓ

s.t.Fk (ỹ1, ..., ỹn, ℓ, γ (i) , ξc,k) = yk (i) .

We assume that Fk is increasing in ỹ1, ..., ỹn, ℓ and γ. The cost function can be rewritten as:

χ̃k (p, yi,k, γ (i) , ξc,k) =

N∑
l=1

plỸl,k (p, yk (i) , γ (i) , ξc,k) + ℓk (p, yk (i) , γ (i) , ξc,k) ,

where ℓk and Ỹl,k are demand for labor and product l. χ̃k (p, yk (i) , γ (i) , ξc,k) is increasing in p and yk (i),
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and decreasing in γ. Total demand for good k is given by:

Yk = Ck +
n∑

l=1

∫
i∈Il

Ỹk,l (p, yl (i) , γ (i) , ξc,l) di.

Conditional on producing, the firm’s (variable) profit maximization problem is:

Πk (γ (i)) = sup
pk(i)

pk (i) yk (pk (i))− χ̃k (p, yk (pk (i)) , γ (i) , ξc,k) ,

yk (pk (i)) = dk

(
pk (i) , {pk (j)}j∈Ik

)
Yk.

The price of variety i only depends on γ (i): pk (i) = pk (γ (i)). Given that χk (p, yi,k (pi,k) , γ (i) , ξc,k)

is decreasing in γ, Πk (γ (i)) is non-decreasing in γ. Denote γ∗k the minimum level at which firms choose to

produce, that is γ∗k = infγ Πk (γ) s.t.Πk (γ) ≥ ξp,k. Any firm in sector k with γ ≥ γ∗k produces. Denoting

Mk the mass of firms producing in k, and using the fact that the aggregator Fk is symmetrical, the supply

side is summarized by the following equations:

Πk (γ (i)) = sup
pk(i)

pk (i) yk (pk (i))− χ̃k (p, yk (pk (i)) , γ (i) , ξc,k) ,

yi,k (pi,k) = dk

(
pk (i) , {pk (j)}j∈Ik

)
Yk

Yk = Ck +

n∑
l=1

Ml

∫
γ≥γ∗l

Ỹk,l (p, yγ,l, γ, ξc,l)Ψl (γ) dγ

Πk (γ
∗
k) = ξp,k∫

γ≥γ∗k
(Πk (γ)− ξp,k)Ψk (γ) dγ = ξe,k

The firm’s problem defines in each sector three equilibrium objects, Mk,γ
∗
k , and {pγ,k}γ≥γ∗k , which only

depend on {C1, ..., Cn}, the entry costs, and the exogenous cost shifters. Therefore, the price of the retailer

is itself only a function of {C1, ..., Cn}, the entry costs, and the exogenous cost shifters. In addition, since

entry is free, producing firms make no profit on average, so total cost is equal to total revenue, pkYk.

Total labor cost is equal to revenue minus intermediary good cost, pkCk, which micro-founds our cost

function.

Examples of Pricing Function

As our micro-foundations are abstract, we now give some concrete examples of pricing functions in seminal

entry models.

Melitz-Chaney. There are no input-output linkages, so Yk = Ck. Retailers have CES preferences

over varieties in sector k, Ck =

(∫
i∈Ik c

ϵk−1

ϵk
k,i di

) ϵk
ϵk−1

; the producers’ productivity distribution is Pareto:

1 − Ψk (γ) = γ−γk ; and the variable production cost is χk (yk,i, γ (i) , ξc,k) = ξc,kyk,i/γ (i). We assume

1+γk > ϵk > 1 and 1+γk−ϵk
ϵk−1

ξe,k
ξp,k

≥ 1. Taking first order conditions, we obtain that unit demand for variety
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is given by:

dk,i

(
pi,k, {pj,k}j∈Ik

)
=

(
pk,i
pk

)−ϵk

pk =

(∫
i∈Ik

p1−ϵk
k,i di

) 1
1−ϵk

The producer’s problem then directly gives that variety prices and firm profit (without fixed cost) are

given by:

pk,i = argmax

{
Ck

(
pk,i
pk

)−ϵk
(
pk,i −

ξc,k
γ (i)

)}

=⇒ pk,i =
ϵk

ϵk − 1

ξc,k
γ (i)

Πk,i = Ck

(
1

pk

ϵk
ϵk − 1

ξc,k
γ (i)

)−ϵk 1

ϵk − 1

ξc,k
γ (i)

Note that profit are increasing in γ (i), so all firm with γ (i) ≥ γ∗ produce, where γ∗ is the cost solv-

ing Ck

(
1
pk

ϵk
ϵk−1

ξc,k
γ∗

)−ϵk 1
ϵk−1

ξc,k
γ∗ = ξp,k. Using this, we can rewrite Πk,i = ξp,k

(
γ(i)
γ∗

)ϵk−1
⊮ (γ (i) ≥ γ∗).

Because of free entry, firms must make zero profit ex ante so the entry condition therefore becomes:

∫
γ≥γ∗

ξp,k

((
γ

γ∗

)ϵk−1

− 1

)
γkγ

−1−γkdγ = ξe,k

=⇒ γ∗ =

(
1 + γk − ϵk
ϵk − 1

ξe,k
ξp,k

)− 1
γk

Next, denoting the mass of firm entering the market by Mk, the price index pk is given by

pk =

(∫
i∈Ik

p1−ϵk
k,i di

) 1
1−ϵk

=M
1

1−ϵk
k

ϵk
ϵk − 1

ξc,k

(∫
γ≥γ∗

γϵk−1γkγ
−1−γkdγ

) 1
1−ϵk

=M
1

1−ϵk
k

ϵk
ϵk − 1

ξc,k

(
γk

1 + γk − ϵk
(γ∗)ϵk−γk−1

) 1
1−ϵk

=M
1

1−ϵk
k

ϵk
ϵk − 1

ξc,k

 γk
1 + γk − ϵk

(
1 + γk − ϵk
ϵk − 1

ξe,k
ξp,k

) 1+γk−ϵk
γk

 1
1−ϵk

,
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where the last line uses our solution for γ∗. Finally, using the our first definition of γ∗, we have:

Ck

(
1

pk

ϵk
ϵk − 1

ξc,k
γ∗

)−ϵk 1

ϵk − 1

ξc,k
γ∗

= ξp,k

⇔ C
−1
ϵk
k

 γk
1 + γk − ϵk

(
1 + γk − ϵk
ϵk − 1

ξe,k
ξp,k

) 1+γk−ϵk
γk

− 1
1−ϵk (

1 + γk − ϵk
ϵk − 1

ξe,k
ξp,k

)− 1
γk

1
ϵk

(
1

ϵk − 1

ξc,k
ξp,k

)− 1
ϵk

=M
1

1−ϵk
k

⇒ pk = C
−1
ϵk
k ϵkξp,k

(
1 + γk − ϵk
ϵk − 1

ξe,k
ξp,k

)− 1
γk

1
ϵk

(
1

ϵk − 1

ξc,k
ξp,k

) ϵk−1

ϵk

The pricing function is therefore given by ϕk(Ck, ξk) = C
−1
ϵk
k ϵkξp,k

(
1+γk−ϵk
ϵk−1

ξe,k
ξp,k

)− 1
γk

1
ϵk

(
1

ϵk−1
ξc,k
ξp,k

) ϵk−1

ϵk ,

while the negative of the elasticity with respect to market size is αk = 1/ϵk

HARA aggregator. To showcase how demand can directly impact producers’ markups, we consider

a case with non-CES preferences. Retailers preferences for varieties are given by a HARA aggregator

without love for variety: Fk

(
{ck,i/ck}i∈Ik

)
= M

−1
ϵk−1

k

(∫
i∈Ik (ck,i/ck + b)

ϵk−1

ϵk di

) ϵk
ϵk−1

, with b > 0. In

addition, assume that Ψk is a mass point at γ = 1, that ξp,k = 0 and that χk (yk,i, γ (i) , ξc,k) = ξc,kyk,i.

From the retailer first order condition, we obtain:

ck,i
ck

+ b =

(
pk,i
pk

)−ϵk
(∫

i∈Ik

ck,i
ck

(
ck,i
ck

+ b

)−1
ϵk
di

)−ϵk

.

Using M
−1

ϵk−1

k

(∫
i∈Ik (ck,i/ck + b)

ϵk−1

ϵk di

) ϵk
ϵk−1

= 1, we obtain:

(∫
i∈Ik

ck,i
ck

(ck,i/ck + b)
−1
ϵk di

)−ϵk

=M
1

ϵk−1

k

(∫
i∈Ik

(
pk,i
pk

)1−ϵk

di

)− ϵk
ϵk−1

So we have:

ck,i =

M 1
ϵk−1

k

(∫
i∈Ik

(
pk,i
pk

)1−ϵk

di

) 1
1−ϵk

ϵk (
pk,i
pk

)−ϵk

− b

 ck,

dk,i

(
pi,k, {pj,k}j∈Ik

)
=

M 1
ϵk−1

k

(∫
i∈Ik

(
pk,i
pk

)1−ϵk

di

) 1
1−ϵk

ϵk (
pk,i
pk

)−ϵk

− b


Multiplying the last expression by pk,i/pk and integrating we obtain:

pk =M
1

ϵk−1

k

(∫
i∈Ik

p1−ϵk
k,i di

) 1
1−ϵk − b

∫
i∈Ik

pk,idi.
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Next, the producer’s FOC, conditional on producing, gives:

M
1

ϵk−1

k

(∫
i∈Ik

(
pk,i

pk

)1−ϵk

di

) 1
1−ϵk

ϵk (
pk,i

pk

)−ϵk

− b

 pk,i−ϵkM
1

ϵk−1

k

(∫
i∈Ik

(
pk,i

pk

)1−ϵk

di

) 1
1−ϵk

ϵk (
pk,i

pk

)−ϵk (
pk,i − ξc,k

)
= 0.

Denoting p∗k the common price chosen by firms, we have pk = (1− bMk) p
∗
k so we can rewrite the last

expression as:

(1− bMk) p
∗
k − ϵk (p

∗
k − ξc,k) = 0,

⇒p∗k =
ϵk

ϵk − 1 + bMk
ξc,k

⇒pk =
ϵk (1− bMk)

ϵk − 1 + bMk
ξc,k

Finally using the free entry condition, we obtain:

Ck
(1− bMk)

2

ϵk − (1− bMk)
= −1

b

ξe,k
ξc,k

((1− bMk)− 1)

Solving the quadratic equation in 1− bMk yields:

1− bMk =
ϵk

bCk
ξc,k
ξe,k

− 1

−1 +

√
1 + 4 1

ϵk

(
bCk

ξc,k
ξe,k

− 1
)

2

Plugging this expression in pk, we obtain:

pk =

ϵk

(√
1 + 4 1

ϵk

(
bCk

ξc,k
ξe,k

− 1
)
− 1

)
2
(
bCk

ξc,k
ξe,k

− 1
)
−
(√

1 + 4 1
ϵk

(
bCk

ξc,k
ξe,k

− 1
)
− 1

)ξc,k,
and direct algebra shows that the negative of elasticity of price with respect to demand is:

αk =
Ekb

ξe,k
/

(
ϵk − 1 + 2

Ekb

ξe,k

)
,

with Ek = pkCk. As demand increases, more firms enter; with HARA preferences, demand for varieties

becomes more price elastic with more firms, so markups decrease and the aggregate price index decreases.

Translog aggregator. We finally consider a standard case where retailers have translog preferences. As

is standard, we express preferences directly in terms of the expenditure function. Denoting M̃k the mass
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of potential entrants, we have:

ln (ek) = ln(ck) + αo +
M̃k −Mk

2γM̃kMk

+

∫
i∈Ik

1

Mk
ln(pi,k)di+

βk
2Mk

∫
i∈Ik

∫
j∈Ik

ln(pi,k)(ln(pj,k)− ln(pi,k))didj

ln (pk) = αo +
M̃k −Mk

2γM̃kMk

+

∫
i∈Ik

1

Mk
ln(pi,k)di+

βk
2Mk

∫
i∈Ik

∫
j∈Ik

ln(pi,k)(ln(pj,k)− ln(pi,k))didj

Unit demand is given by

dk,i

(
pi,k, {pj,k}j∈Ik

)
=

pk
Mkpi,k

(
1 + βk

∫
j∈Ik

ln(pj,k))dj − βkMkln(pi,k))

)
.

We assume that Ψk is a mass point at γ = 1, that ξp,k = 0 and that χk (yk,i, γ (i) , ξc,k) = ξc,kyk,i, i.e. we

consider identical firms with a linear production function. The producer first order condition gives:

−γk
pk
pi,k

(
1−

ξk,c
pi,k

)
+
ξk,c
pi,k

pk
Mkpi,k

(
1 + βk

∫
j∈Ik

ln(pj,k))dj − βkMkln(pi,k))

)
= 0.

So the common price set by producers is

p∗k = ξk,c

(
1 +

1

βkMk

)
.

We therefore obtain that the price index is given by:

ln (pk) = ln(ξk,c) + κ0 +
1

2βkMk
+ ln

(
1 +

1

βkMk

)
,

with κ0 = αo − 1
2γM̃k

, while Mkis determined implicitly by the free entry condition:

pk
pi,k

(pi,k − ξk,c)
Ck

Mk
= ξk,e

κ0 +
1

2βkMk
+ ln (βk)− 2ln (Mk) = ln

(
ξk,e
ξk,c

)
− ln (Ck) .

We therefore obtain:

αk =

(
1

2βkMk
+

1

βkMk + 1

)
dln (Mk)

dln (Ck)
,

with
dln (Mk)

dln (Ck)
=

(
1

2βkMk
+ 2

)−1

.

As with HARA preferences, an increase in demand leads to more entry by producers and lower markups.

E.2 First Order Approach in the General Model

We provide a version of Proposition 1 in our extended model. Relative to the main text, the formula for

the optimal income tax remains unchanged; however, commodity taxation can play a nontrivial role in the

monopolistic case. Under perfect competition or when mark-ups are uniform across sectors, we recover

a variant of the Atkinson-Stiglitz result: optimal tax policy relies solely on the income tax, with no role

for commodity taxes. In contrast, when pricing frictions (captured by the mark-ups ϕk/
∑n

l=1 ∂Ck
χl − 1)

differ across sectors, commodity taxes serve to correct relative mark-ups. Specifically, they ensure that
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consumers internalize the social benefit of consumption across markets by adjusting for distortions in

relative prices.

To fix ideas, suppose that ϕk and χk only depends on Ck. Then, an increase in demand for good k

induces a price change determined by −Akk. In Proposition E1, we show that if this price falls by more

than α (the average market size elasticity), then good k is subsidized. Conversely, if the price response is

smaller than α, the good is taxed. Intuitively, consumption taxes reallocate demand toward sectors with

inefficiently high mark-ups, where demand is otherwise too low. This reallocation helps restore efficiency

by offsetting sector-specific pricing distortions.

Proposition E1. The optimal commodity taxes tk, with qk = (1+ tk)pk, are null in the competitive case.

In the monopolistic case, they are given by:

1 + ti =
1−

∑
j Aj,ipjCj/piCi

1− α
, (A56)

with α ≡
∑

i(
∑

j Ai,j)piCi∑
i piCi

. The optimal non-linear income tax schedule is characterized by:

T ′

1− T ′ = −tw +
1− tw

zζ̃f(z)

{
Ez′>z (1− g)− 1

1− tw
Ez′>z

((
tw +

T ′

1− T ′

)
η̃

)}
. (A57)

with g = G′Uvvz∗/((1− α)λ), tw = α in the monopolistic case, tw = 0 in the competitive case.

Proof of Proposition E1. After integration by parts of the planning problem, the corresponding

Lagrangian is:

L =

∫
G(V (θ), θ)π(θ)dθ −

∫
(µ′(θ)V (θ) + µ(θ)Uθ(v(θ), z(θ), θ))dθ

−λ

(∫
z∗(θ)− z(θ)π(θ)dθ −

n∑
k=1

qkCk − χk (C1, ..., Cn, ξk)

)

where µ(θ) are the multipliers on the incentive constraints and λ is the multiplier on the resource con-

straint.

We start with the FOC with respect to consumer prices qi. Recall that ch(q, v) is the Hicksian demand

function at prices q for a given sub-utility v; we have:

dcj
dqi

∣∣∣∣
z,V

=
dcj
dqi

∣∣∣∣
v

=
∂chj
∂qi

dz∗

dqi

∣∣∣∣
z,V

=
dz∗

dqi

∣∣∣∣
v

= ci

We therefore have, denoting ∂qiC
h
j =

∫
∂qic

h
j π(θ)dθ:
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dL
dqi

= λ

Ci +
∑
j

(
qj −

∑
k

∂Cjχk

)
∂qiC

h
j − Ci


⇒ 0 =

∑
j

(
qjCj −

∑
k

Cj∂Cjχk

)
Sj,i,

where A and S are as in definition E1 and E2. Given that S is generically of rank N − 1 with left kernel

qC, we have:

(1− β)qk =
∑
k

∂Cjχk,

where 1 − β > 0 is an arbitrary scaling constant. Therefore, since pk =
∑

k ∂Cjχk in the competitive

case, no commodity tax is optimal. In the monopolistic case, we have
∑

k ∂Cjχk = pj −
∑

k pkCkAk,j/Cj .

Denoting α the scaling such that q · C − p · C = 0 gives:

q · C − p · C =
1

1− β

β∑
i

piCi −
∑
i

piCi

∑
j

Ai,j


⇒ α =

∑
i(
∑

j Ai,j)piCi∑
i piCi

.

With this scaling, the ad valorem commodity taxes in the monopolistic are:

1 + ti =
1−

∑
j Aj,ipjCj/piCi

1− α
.

Next, we derive the FOC associated with V . V (θ) impacts consumption and producer prices through z∗(θ)

with dz∗(θ)/dV (θ) = (Uvvz∗)
−1. Denoting tw = α in the monopolistic case, tw = 0 in the competitive

case, and using our result on optimal commodity taxes, we have:

0 = G′(V (θ), θ)π(θ)− µ′(θ)− µ
Uθ,v

Uv
− λπ(θ)

Uvvz∗

[
1−

∑
i

(
qi −

∑
k

∂Ciχk

)
∂z∗ci(θ)

]

= G′(V (θ), θ)π(θ)− µ′(θ)− µ
Uθ,v

Uv
− λπ(θ)

Uvvz∗

[
1−

∑
i

(qi − (1− tw) (1 + ti) pi) ∂z∗ci(θ)

]

= G′(V (θ), θ)π(θ)− µ′(θ)− µ
Uθ,v

Uv
− λπ(θ)

Uvvz∗

[
1− tw

∑
i

qi ∂z∗ci(θ)

]

⇒µ′(θ)
Uvvz∗

λ
+ µ

Uθ,vvz∗

λ
= −

(
1− tw − G′(V (θ), θ)Uvvz∗

λ

)
π(θ).

Finally, defining µ̃ = µ Uvvz∗/λ, we have:

A63



µ̃′(θ) + µ̃ ∂z∗MRS z′(θ) = −
(
1− tw − G′(V (θ), θ)Uvvz∗

λ

)
π(θ),

with MRS = −Uz/Uvvz∗ the marginal rate of substitution.

Finally, the FOC associated with z, using the same steps as above to derive the response of consumption

and prices, is:

0 = µ(−Uθ,z − Uθ,z∗MRS)− λπ(θ) (MRS − 1− twMRS)

⇒ µ̃ ∂θMRS = π(θ)((1− tw)MRS − 1)

Since MRS = 1 − T ′(z(θ)), and zζ̃∂θMRS = −z′(θ)(1 − T ′(z(θ))), where ζ̃ is defined in Definition E.1,

we therefore have, denoting f(z(θ)) = π(θ)/z′(θ)

µ̃(θ) = f(z)zζ̃

(
T ′

1− T ′ + tw

)
Finally, using −zζ̃ ∂z∗MRS = η̃ we get:

f(z)zζ̃

(
T ′

1− T ′ + tw

)
+

∫ z(θ̄)

z(θ)
η̃

(
T ′

1− T ′ + tw

)
f(z)dz =

∫ z(θ̄)

z(θ)

(
1− tw − G′Uvvz∗

λ

)
f(z)dz

Using g = G′Uvvz∗/((1− α)λ), we obtain the formula of Proposition A1.□

E.3 Comparative Statics Results

In this section, we we extend the results of Section 4. We begin by deriving a general comparative statics

formula for the change in the optimal tax rate in response to exogenous supply shocks (i.e. changes in

the parameters ξ). This result generalizes lemma A1 from Appendix A. To obtain streamlined formulas,

we assume that utility is additively separable between consumption and labor.

Assumption E3. Additive Separability. U is additively separable and takes the form U (u (c1, ..., cn) , z, θ) =

u (c1, ..., cn) − ψ (z/θ), with ψ and u increasing in their arguments and respectively convex and concave.

We denote ϵ (z/θ) = ψ′/ (z/θψ′′)and assume | (z/θ) ϵ′ (z/θ) /ϵ| ≤ 1.

Under this assumption, we derive the equation determining the change in taxes in response to an

exogenous supply shift dξ. As for lemma A1, the system is more easily expressed in terms of dV/

dξ = −v′
(
dT/dξ +

∑N
i=1 eidlnqi/dξ

)
. We will use this system to extend the results of the main text with

general production functions and households preferences

Proposition E2. Under assumption E3, the change in the income tax schedule, expressed in terms

of dV/dξ = −v′
(
dT/dξ +

∑N
i=1 eidlnqi/dξ

)
, in response to an exogenous supply shift dξ, conditional on
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the change consumer prices dqi/dξ and market size elasticity dtw/dξ is given by:

θϵ

(1 + ϵ)2
π̃κ (θ)

1

(1− T ′)2
θ

z

1

v′
d

dθ

{
dV

dξ

}
+ (1− tw)

∫ θ̄

θ
π̃g

(
γ (θ)

dV

dξ
−
∫ θ

θ
π̃gγ (θ)

dV

dξ
dθ

)
= −

θϵ

1 + ϵ

π̃(θ)

1− T ′

n∑
i=1

(
τi (θ) + ∂z∗ Ẽi

) 1

qi

dqi

dξ

+
θϵ

1 + ϵ

π̃(θ)

1− T ′
1

1− tw

dtw

dξ

(1− tw)

∫ θ̄

θ
g
1

v′
dV

dξ
πdz = −

n∑
i=1

∂χi

∂ξ

where π̃ = 1
v′π/

∫ θ
θ

1
v′πdθ, ∂z∗Ẽi =

∫ θ
θ ∂z∗eiπ̃dθ, κ (θ) = 1−(1− tw) (1− T ′)2 ϵz v

′′

v′ −
(z/θ)ϵ′

1+ϵ (1− (1− T ′) (1− tw)),

γ (θ) = −G′′

G′ − g−1
(

v′′

(v′)2
− 1

π̃
d
dθ

{
θϵ
1+ϵ π̃(θ)

v′′

(v′)2

})
, and

τl (θ) = (1− tw)
(
1− T ′)(1 + ϵ

ϵ

1

θπ̃θ)

∫ θ̄

θ
(∂z∗el − ∂z∗El) π̃dθ

′ + (∂z∗el − ∂z∗El)

)
.

Proof of Proposition E2. Recall that µ (θ) = µ̃ (θ) /v′ (z (θ)− T (z (θ)), q) is the co-state on the local

incentive constraint. With additive separability in consumption and labor, the income tax schedule is

determined by the following system of equations in µ and V , with unknown λ:

µ′(θ) = − (1− tw)

(
1

v′ (z∗ (θ) , q)
− G′(V (θ), θ)

λ

)
π(θ),

µ(θ) =
1

v′ (z∗ (θ) , q)

θϵ (z/θ)

1 + ϵ (z/θ)
π(θ)

(
T ′ (z (θ))

1− T ′ (z (θ))
+ tw

)
,

V ′ (θ) = z (θ) /θ2ψ′ (z (θ) /θ) , V (θ) = v (z∗ (θ) , q)− ψ (z (θ) /θ) , (A58)

0 =

∫
(z (θ)− z∗ (θ))π(θ) +

N∑
i=1

(qiCi − χi) ,

with µ
(
θ̄
)
= µ (θ) = 0, ϵ (z/θ) = ψ′ (z/θ) / (z/θψ′′ (z/θ)) and v′ (z∗ (θ) , q) = ∂z∗v (z

∗ (θ) , q). Using Roy’s

identity and differentiating the IC-FOC condition, we have:

∂V (θ)

∂ln (qi)
=
∂v (z∗ (θ) , q)

∂ln (qi)
= −v′ (z (θ)− T (z (θ)) , q) ei (z

∗ (θ) , q) ,

dV

dξ
= v′ (z (θ)− T (z (θ)) , q)

(
dz∗ (θ)

dξ
−

N∑
i=1

ei (z
∗ (θ) , q)

dqi
dξ

−
(
1− T ′) dz (θ)

dξ

)
,

d

dθ

{
dV

dξ

}
= 1/θ2ψ′ (z (θ) /θ)

(
1 +

1

ϵ (z/θ)

)
dz (θ)

dξ
= v′

(
1− T ′) 1

θ

(
1 +

1

ϵ (z/θ)

)
dz (θ)

dξ

Using Young’s identity on the first of the two equations above, we have:

∂2v (z∗ (θ) , q)

∂z∗∂ln (qi)
=
∂v′ (z∗ (θ) , q)

∂ln (qi)
=− ∂

∂z∗
{
v′ (z∗ (θ) , q) ei (z

∗ (θ) , q)
}

=−
(
v′′ (z∗ (θ) , q) ei (z

∗ (θ) , q) + v′ (z∗ (θ) , q) ∂z∗ei (z
∗ (θ) , q)

)
.

We use these four equations to differentiate the first two equations of system A58. Differentiating the first
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equation of the system with respect to ξ, we obtain (omitting the arguments of the function for clarity):

d

dθ

{
dµ

dξ

}
= −dµ

dθ

1

1− tw

dtw
dξ

− (1− tw)
1

v′
π

N∑
i=1

∂z∗ei
1

qi

dqi
dξ

− (1− tw)

(
− 1

v′
v′′

(v′)2

(
dV

dξ
+ v′

(
1− T ′) dz (θ)

dξ

)
− G′

λ

G′′

G′
dV

dξ
+
G′

λ

1

λ

dλ

dξ

)
π.

Since µ
(
θ̄
)
= µ (θ) = 0 for all ξ, we have dµ/dξ

(
θ̄
)
= dµ/dξ (θ) = 0, so integrating between θ and θ̄

yields:

1

λ

dλ

dξ
= −

N∑
i=1

∫ θ̄

θ

1
v′π∫ θ

θ
1
v′πdθ

∂z∗eidθ
1

qi

dqi
dξ

+

∫ θ̄

θ

1
v′π∫ θ

θ
1
v′πdθ

v′′

v′

(
dz∗ (θ)

dξ
−

N∑
i=1

ei
1

qi

dqi
dξ

)
dθ +

∫ θ̄

θ

G′v′ 1
v′π∫ θ̄

θ
1
v′πdθ

G′′

G′
dV

dξ
dθ

= −
N∑
i=1

∫ θ̄

θ

1
v′π∫ θ

θ
1
v′πdθ

∂z∗eidθ
1

qi

dqi
dξ

+

∫ θ̄

θ

1
v′π∫ θ

θ
1
v′πdθ

v′′

(v′)
2

(
dV

dξ
+ v′ (1− T ′)

dz (θ)

dξ

)
dθ +

∫ θ̄

θ

G′v′ 1
v′π∫ θ̄

θ
1
v′πdθ

G′′

G′
dV

dξ
dθ

Defining π̃ = 1
v′π/

∫ θ
θ

1
v′πdθ, which corrects the distribution of types to take into account the income

effects, we can rewrite the change in the value of public funds as:

1

λ

dλ

dξ
= −

N∑
i=1

∫ θ̄

θ
∂z∗eiπ̃dθ

dqi
dξ

+

∫ θ̄

θ
π̃
v′′

(v′)2

(
dV

dξ
+ v′

(
1− T ′) dz (θ)

dξ

)
π̃dθ +

∫ θ

θ

G′v′π̃∫ θ
θ G

′v′π̃dθ

G′′

G′
dV

dξ
dθ

Differentiating the system with respect to ξ, for the second equation we obtain (omitting the arguments

of the function for clarity):

dµ

dξ
=

θϵ

1 + ϵ

1

v′
π(θ)

dtw
dξ

− (1− tw)
θϵ

1 + ϵ

1

v′
π(θ)

N∑
i=1

∂z∗ei
1

qi

dqi
dξ

+ (1− tw)
θϵ

1 + ϵ

1

v′
π(θ)

v′′

(v′)
2

(
dV

dξ
+ v′ (1− T ′)

dz (θ)

dξ

)
+

ϵ′

(1 + ϵ)
2

1

v′
π(θ)

(
T ′

1− T ′ + tw

)
dz

dξ
− 1

1 + ϵ

1

v′
π(θ)

1

1− T ′
θ

z

dz

dξ

We therefore obtain the following equation in terms of dV
dξ :

d

dθ

{
θϵ

1 + ϵ
π̃

(
(1− tw) v

′′

(v′)2
dV

dξ
+

(
(1− tw)

(
1− T ′) v′′

v′
+
ϵ′/ (θϵ)

1 + ϵ

(
T ′

1− T ′ + tw

)
− 1

1− T ′
1

ϵz

)
dz

dξ

)}
= − d

dθ

{
1

1− T ′
θϵ

1 + ϵ
π̃

}
1

1− tw

dtw
dξ

−(1− tw)

n∑
i=1

π̃

(
∂z∗ei −

∫ θ

θ

∂z∗eiπ̃dθ

)
1

qi

dqi
dξ

− d

dθ

{
θϵ

1 + ϵ
π̃

n∑
i=1

(
(1− tw) ∂z∗ei −

(
(1− tw)−

1

1− T ′

)∫ θ̄

θ

∂z∗eiπ̃dθ

)
1

qi

dqi
dξ

}

+ (1− tw) π̃

(
v′′

(v′)2

(
dV

dξ
+ v′

(
1− T ′) dz (θ)

dξ

)
− g

∫ θ

θ

π̃
v′′

(v′)2

(
dV

dξ
+ v′

(
1− T ′) dz (θ)

dξ

)
dθ

)

+ (1− tw) gπ̃

(
G′′

G′
dV

dξ
−
∫ θ̄

θ

G′′

G′
dV

dξ
gπ̃dθ

)
. (A59)

Next, we simplify the formula using v′ (1− T ′) dz(θ)
dξ = θϵ

1+ϵ
d
dθ

{
dV
dξ

}
. Focusing on the first term in the
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RHS of equation A59, we can re-express it as:

d

dθ

{
θϵ

1 + ϵ
π̃(θ)

v′′

(v′)2
dV

dξ

}
=

θϵ

1 + ϵ
π̃(θ)

v′′

(v′)2
d

dθ

{
dV

dξ

}
+

d

dθ

{
θϵ

1 + ϵ
π̃(θ)

v′′

(v′)2

}
dV

dξ

= π̃(θ)
v′′

(v′)2
v′
(
1− T ′) dz (θ)

dξ
+

d

dθ

{
θϵ

1 + ϵ
π̃(θ)

v′′

(v′)2

}
dV

dξ
.

Substituting in equation A59 yields:

d

dθ

{(
θϵ

1 + ϵ

)2

π̃

(
(1− tw)

(
1− T ′) v′′

v′
+
ϵ′/ (θϵ)

1 + ϵ

(
T ′

1− T ′ + tw

)
− 1

1− T ′
1

ϵz

)
1

1− T ′
1

v′
d

dθ

{
dV

dξ

}}

= − d

dθ

{
1

1− T ′
θϵ

1 + ϵ
π̃

}
1

1− tw

dtw
dξ

− (1− tw)

n∑
i=1

(
π̃

(
∂z∗ei −

∫ θ

θ

∂z∗eiπ̃dθ

)
− d

dθ

{
θϵ

1 + ϵ
π̃

(
(1− tw) ∂z∗ei −

(
(1− tw)−

1

1− T ′

)∫ θ̄

θ

∂z∗eiπ̃dθ

)})
1

qi

dqi
dξ

+ (1− tw) π̃

((
v′′

(v′)2
− d

dθ

{
θϵ

1 + ϵ
π̃(θ)

v′′

(v′)2

})
dV

dξ
− g

∫ θ

θ

π̃

(
v′′

(v′)2
− d

dθ

{
θϵ

1 + ϵ
π̃(θ)

v′′

(v′)2

})
dV

dξ
dθ

)

+ (1− tw) gπ̃

(
G′′

G′
dV

dξ
−
∫ θ̄

θ

G′′

G′
dV

dξ
gπ̃dθ

)
.

Integrating the formula above, we obtain:

(
θϵ

1 + ϵ

)2

π̃κ (θ)
1

1− T ′
1

v′
d

dθ

{
dV

dξ

}
=

1

1− T ′
θϵ

1 + ϵ
π̃

1

1− tw

dtw
dξ

− (1− tw)

n∑
i=1

(∫ θ̄

θ

π̃
(
∂z∗ei − ∂z∗Ẽi

)
dθ +

{
θϵ

1 + ϵ
π̃

(
(1− tw)

(
∂z∗ei − ∂z∗Ẽi

)
+

1

1− T ′ ∂z∗Ẽi

)})
1

qi

dqi
dξ

− (1− tw)

∫ θ̄

θ

π̃g

(
γ (θ)

dV

dξ
−
∫ θ

θ

π̃gγ (θ)
dV

dξ
dθ

)
,

where ∂z∗Ẽi =
∫ θ
θ ∂z∗eiπ̃dθ, κ (θ) =

1
ϵ

1
1−T ′

1
z − (1− tw) (1− T ′) v′′

v′ −
ϵ′/(θϵ)
1+ϵ

(
T ′

1−T ′ + tw

)
and γ (θ) = −G′′

G′ −

g−1
(

v′′

(v′)2
− 1

π̃
d
dθ

{
θϵ
1+ϵ π̃(θ)

v′′

(v′)2

})
.

Finally, using the optimality of consumption taxes, the government budget constraint becomes:

0 =

∫ θ̄

θ

(
dT

dξ
+

N∑
i=1

ei
1

qi

dqi
dξ

+ T ′dz

dξ

)
πdθ −

n∑
i=1

∂χi

∂ξ
+ tw

n∑
i=1

qi
dCi

dξ

dCi

dξ
=−

∫ θ̄

θ
∂z∗ci

(
dT

dξ
+

N∑
i=1

ei
1

qi

dqi
dξ

−
(
1− T ′) dz

dξ

)
πdθ +

N∑
i=1

∫ θ̄

θ
∂qjc

h
i πdθ

dqj
dξ
.

Plugging the expression for aggregate consumption, we obtain:

0 =

∫ θ̄

θ

(
dT

dξ
+

N∑
i=1

ei
1

qi

dqi
dξ

+ T ′dz

dξ

)
πdθ −

n∑
i=1

∂χi

∂ξ
− tw

∫ θ̄

θ

(
dT

dξ
+

N∑
i=1

ei
1

qi

dqi
dξ

−
(
1− T ′) dz

dξ

)
πdθ
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Using the definitions of dV/dξ and dz/dξ and the optimality of the initial income tax schedule, we obtain:

0 = −
∫ θ̄

θ
(1− tw)

1

v′
π
dV

dξ
+

d

dθ

{(
T ′

1− T ′ + tw

)
θϵ

1 + ϵ

1

v′
π

}
dV

dξ
dθ −

n∑
i=1

∂χi

∂ξ

⇔ (1− tw)

∫ θ̄

θ
g
1

v′
dV

dξ
πdz = −

n∑
i=1

∂χi

∂ξ
,

which completes the proof. □

The formula in Proposition E2 retains the same structure as the one in Lemma A1, indicating that the

introduction of richer income effects does not substantially alter the qualitative response of the optimal

tax schedule to price changes. Nonetheless, several distinctions arise.

First, that the relevant distribution with income effects is now given by π̃ = 1
v′π/

∫ θ
θ

1
v′πdθ . This

re-weighted distribution corrects the original type distribution π to accounts for income effects. Such

a correction is standard: for instance, Saez (2001) introduces implicitly an equivalent re-weighting of

the income distribution, f̃ ≡ f (z) e
−
∫ z
z

η
zζ

dz
fdz/

∫ z̄
z f (z) e

−
∫ z
z

η
zζ

dz
dz. Importantly, if v is CRRA, v =

(z∗)1−β / (1− β), and π is asymptotically Pareto with tail index ω, then π̃ also has Pareto tails with

adjusted coefficient ω̃ = ω − 1+ϵ
1+βϵβ , so the asymptotic properties of the distribution are preserved.

Second, the terms κ and γ differ from lemma A2 since they now depends on the curvature of utility

−v′′

v′ (which, as −G′′

G′ , captures the income effect on Pareto weights), on the super-elasticity of ζ (which

depends on dln(ϵ)/dlnθ), and on η (which depends on dln(−v′′

v′ )/dlnθ). By construction, κ (θ) ≥ 0 for all

θ and, under reasonable assumptions, γ (θ) ≥ 0. Indeed, if v is CRRA, we have:

γ (θ) = −G
′′

G′ − g−1 v′′

(v′)2

(
1− 1

π̃

d

dθ

{
θϵ

1 + ϵ
π̃(θ)

}
+

ϵ (1− β)

1 + ϵ (1− T ′)β z
z∗ + ϵzT ′′

1−T ′

(1− T ′) z

z∗

)

Therefore, if d
dθ

{
θϵ
1+ϵ π̃(θ)

}
/π̃(θ) ≤ 1 (which parallels Assumption A2 in the main text) and ϵ small, then

we have γ ≥ 0. To highlight the dependence of κ and γ on super-elasticities more transparently, it is

helpful to express the RHS of the formula of Proposition E2 in terms of z rather than θ:

zζ̃f̃κ (z)
1

1− T ′
1

v′
d

dz

{
dV

dξ

}
+ (1− tw)

∫ z̄

z
gf̃

(
γ
(
z′
) dV
dξ

−
∫ z̄

z
γ (z)

dV

dξ
gf̃dz

)
dz′,

with

κ (z) ≡

(
1

1− T ′
ζ̃

ζ
−
(

T ′

1− T ′ + α

)(
η̃ + zζ̃

ζ ′/ζ − η′/ (1 + η)

1 + η/ζ − zT ′′/ (1− T ′)

))
,

γ (z) ≡ − 1

(1− T ′) g (z)

1

v′ (z)

η̃

zζ

(
1− zζ (z)

f̃ ′ (z)

f̃ (z)
+ η − zζ (z)

η̃′ (z)

η̃ (z)

)
− G′′ (z)

G′ (z)
.

Finally, the novelty of Proposition E2 is that, under a more general supply-side structure, the optimal

tax rate becomes sensitive to changes in the average market-size elasticity, tw = α (in the monopolistic

case). The intuition is straightforward: if α increases, an increase in demand for goods reduces prices

more strongly. As a consequence, the planner reduces the income tax to encourage labor supply, increase
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total income, and thereby further reduce prices.

E.3.1 Partial equilibrium results

We now extend the results of Proposition 3, allowing for income effects on labor supply. As in the main

text, we consider an increase in the relative price of the necessity, p̄l, in a two-sector economy with linear

production functions (α = 0). As before, good l is defined to be a necessity by assumption A1.3 We

prove our extension assuming that the coefficient γ is positive and under a restriction on the distribution

of types π̃ similar to assumption A2. The assumption that γ is positive reflects social preferences placing

some weight on reducing income inequality. Indeed, γ < 0 implies that the objective function of the

planner is convex: in that case, the regressive impact of the price change discussed in the main text would

be exacerbated. To avoid artificially strengthening our results, we assume that γ > 0, which ensures that

the planner is inequality-averse and values redistribution.

Assumption (E3). d
dθ

{
θϵ
1+ϵ π̃(θ)

}
/π̃(θ) ≤ 1and γ (θ) ≥ 0 for all θ.

As in the main text, we compare the welfare impact of a change in the relative price of necessities,

p̄l, compared to the change in welfare that would occur if the social welfare function was linear and

satisfied:

θϵ

(1 + ϵ)2
π̃κ (θ)

1

(1− T ′)2
θ

z

1

v′
d

dθ

{
dVlin
dp̄l

}
= − θϵ

1 + ϵ

π̃(θ)

1− T ′

n∑
i=1

(
τi (θ) + ∂z∗Ẽi − s̄l

)
.

As before, dVlin/dp̄l is increasing in θ, negative at the bottom of the distribution, and positive at the

top. Consistent with Proposition 3, we find that the change in welfare increases more slowly than in the

linear benchmark. Households experience a strict welfare loss, while households at the top benefit – even

though, in principle, it would be feasible to compensate all individuals. Hence, our qualitative conclusions

from the main text remain robust when income effects on labor supply are introduced.

While Proposition 3 only considered the case where γ is decreasing (consistent with most standard

social welfare functions), in Proposition E3 we also examine the case where γ is increasing. Indeed, with

a linear social welfare function and v CRRA, γ increases when the risk aversion parameter is sufficiently

large, and decreases when it is small.

In addition, we characterize the willingness to pay for the price change (including the optimal tax

reform) for agents at the top of the income distribution. The willingness to pay for a price change and

induced optimal tax reform is Z = 1
z∗vz∗

dV
dp̄l

. Here, 1
vz∗

dV
dp̄l

represents the dollar amount household θ would

be willing to pay to implement the reform, while 1
z∗vz∗

dV
dp̄l

expresses how much the household would be

willing to pay as a share of their pre-reform income z∗ . Under the assumption of Proposition 3, the

willingness to pay for the reform is positive and given by Z = ∂z∗el − s̄l at the top of the distribution.

When v is CRRA with coefficient β, we show in Proposition E3 that the willingness to pay for the reform

is Z = C0 (∂z∗el − s̄l), with C0 > 0. In this sense, income effects only scale the impact of the reform on

high income households by a positive scalar C0: when C0 > 1, top-income households gain more than in

3Note that ∂z∗El ≤ s̄l directly implies ∂z∗Ẽl ≤ s̄l since π̃ puts more weight on high income households when v is concave.
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the linear case; when C0 < 1, they gain less. Interestingly, when β ≤ 1 and the Pareto coefficient of the

distribution π̃ is not too high,4 then C0 ≥ 1: there is more redistribution towards high income households

than in the case without income effects. The case β ≤ 1 and 1+βϵ
1+ϵ ω+β ≤ 2 is empirically relevant for the

U.S. Indeed, if β > 1, hours worked would counterfactually decline with income. In addition, the pre-tax

income distribution in the US has a Pareto coefficient of less than 2 (it ranges from 1.5 to 2, depending

on how much capital income is included), which implies that the underlying distribution of type π̃ has a

Pareto coefficient of around 1 for β = 1, which satisfies the sufficient condition on ω.

Therefore, under realistic calibrations, our main result is amplified: an increase in the relative price

of necessities leads to even greater redistribution in favor of high-income households than in the baseline

case without income effects.

Proposition E3. Under assumption E4, for an increase in the relative price of necessities, the compen-

sating scheme dT (z (θ)) = − (sl − s̄l) z
∗dlnp̄l is feasible but only optimal when preferences are homothetic.

With non-homothetic preferences, the change in welfare of agent θ, dV G/dp̄l (θ) ̸= 0.

If γ is decreasing, dV G/dp̄l (θ) satisfies dVlin/dp̄l (θ) < dV G/dp̄l (θ) < 0 , dV G/dp̄l (θ)−dV G/dp̄l (θ) <

dVlin/dp̄l (θ)− dVlin/dp̄l (θ), and E
(
gdV G (θ) /dp̄l

)
= 0.

If γ is increasing , dV G/dp̄l (θ) satisfies dVlin/dp̄l
(
θ̄
)
> dV G/dp̄l

(
θ̄
)
> 0 , dV G/dp̄l (θ) − dV G/

dp̄l (θ) < dVlin/dp̄l (θ)− dVlin/dp̄l (θ), and E
(
gdV G (θ) /dp̄l

)
= 0.

Asymptotically, if there is θ0 such that for θ ≥ θ0, ψ
′/ (z/θψ′′) = ϵ < 1, v is CRRA with coefficient β,

π̃ is Pareto with coefficient ω, and the social welfare function G is CRRA, CARA or linear, then the

willingness to pay Z = (z∗vz∗)
−1 dV/dp̄l satisfies:

Z ∼ −C0

(
τl + ∂z∗Ẽl − s̄l

)
> 0

C0 =
(1 + βϵ) (1 + ϵ (1 + ω))(

(1− β) (1 + ϵ (1 + ω) + βϵ2ω) + ωβ
(
β (1 + ϵ)2 + ϵω (1 + βϵ)

)) ,
with τl = ∂z∗el − ∂z∗Ẽl, C0 > 0 and C0 ≥ 1 if β ≤ 1, ϵ, ω ≤ 1.

Proof of Proposition E3. For an increase in the price of necessities and when production functions

are linear, the formula of Proposition E2 becomes:

θϵ

(1 + ϵ)
2 π̃κ (θ)

1

(1− T ′)
2

θ

z

1

v′
d

dθ

{
dV

dp̄l

}
+

∫ θ̄

θ

π̃g

(
γ (θ)

dV

dp̄l
−
∫ θ

θ

π̃gγ (θ)
dV

dp̄l
dθ

)
= − θϵ

1 + ϵ

π̃(θ)

1− T ′

(
τl (θ) + ∂z∗Ẽl − s̄l

)
.

Under the assumption that d
dθ

(
θϵ
1+ϵ π̃

)
≤ π̃, following the same steps as in Corollary 1, we have

− θϵ

1 + ϵ

π̃(θ)

1− T ′

(
τl (θ) + ∂z∗Ẽl − s̄l

)
> 0

for all θ. Since κ (θ) > 0 , if γ (θ) is positive and decreasing, following the same step as in Proposition 3,

4A sufficient condition is 1+βϵ
1+ϵ

ω + β ≤ 2 for ϵ = 0.21, which implies that the Pareto tail of the income distribution is less
than 2.
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we have:

dV

dp̄l
(θ) < 0∫ θ̄

θ
π̃g

(
γ (θ)

dV

dp̄l
−
∫ θ

θ
π̃gγ (θ)

dV

dp̄l
dθ

)
> 0∫ θ

θ
π̃g (θ)

dV

dp̄l
dθ = 0,

which implies, as before, dVlin
dp̄l

(θ) < dV
dp̄l

(θ) < 0 and dVlin
dp̄l

(θ)− dVlin
dp̄l

(θ) > dV
dp̄l

(θ)− dV
dp̄l

(θ).

For γ (θ) positive and increasing, consider the change of variable θ̃ = 1/θ, we obtain:

−
ϵ

(1 + ϵ)2
π̃κ
(
θ̃
−1
) 1

(1 − T ′)2
1

z

1

v′
d

dθ̃

{
dV

dp̄l

}
−
∫ ¯̃

θ

θ̃
π̃g

(
γ
(
θ̃
−1
) dV

dp̄l
−
∫ θ

θ
π̃gγ

(
θ̃
−1
) dV

dp̄l
dθ

)
1

θ̃2
dθ̃ = −

θ̃−1ϵ

1 + ϵ

π̃(θ̃−1)

1 − T ′

(
τl

(
θ̃
−1
)
+ ∂z∗ Ẽl − s̄l

)
.

with
¯̃
θ = 1/θ. Since γ

(
θ̃−1
)
is decreasing, we can use our previous result which implies:

dV

dp̄l

(
θ̃
)
=
dV

dp̄l

(
θ̄
)
> 0∫ θ̄

θ
π̃g

(
γ (θ)

dV

dp̄l
−
∫ θ

θ
π̃gγ (θ)

dV

dp̄l
dθ

)
= −

∫ ¯̃
θ

θ̃
π̃g

(
γ
(
θ̃−1
) dV
dp̄l

−
∫ θ

θ
π̃gγ

(
θ̃−1
) dV
dp̄l

dθ

)
1

θ̃2
dθ̃ > 0∫ θ

θ
π̃g (θ)

dV

dp̄l
dθ = 0,

and dVlin
dp̄l

(θ)− dVlin
dp̄l

(θ) > dV
dp̄l

(θ)− dV
dp̄l

(θ), as well as dVlin
dp̄l

(
θ̄
)
> dV

dp̄l

(
θ̄
)
> 0.

We now prove the asymptotic results, assuming that v (z∗,p) = (z∗)1−β / (1− β) and π̃ = π̃0ωθ
−1−ω .

We first start with a case where the equation can be solved in closed form. Assume that, above some θ0,

g = G′′ = ϵ′ = 0, T ′ and ∂z∗el are constant and z∗ = (1− T ′) z. In that case, we can rewrite our equation

as:
θϵ

(1 + ϵ)2
π̃κ

1

(1− T ′)2
θ

z

1

v′
d

dθ

{
dV

dp̄l

}
+

∫ θ̄

θ
π̃γ̃ (θ)

dV

dp̄l
dθ = − θϵ

1 + ϵ

π̃(θ)

1− T ′

(
τl + ∂z∗Ẽl − s̄l

)
,

with κ = 1+βϵ (1− T ′), γ̃ (θ) = (z∗)β−1 β
(
β 1+ϵ
1+βϵ +

ϵω
1+ϵ

)
, τl = ∂z∗el−∂z∗Ẽl. Next, define Z = (z∗)β−1 dV

dp̄l
.

We have:

θϵ

(1 + ϵ)2
π̃κ

1

(1− T ′)2
θ

z

1

v′

(
(z∗)1−β d

dθ
{Z}+

(
1− T ′) ϵ+ 1

1 + βϵ

z

θ
(1− β) (z∗)−β Z

)

+ β

(
β

1 + ϵ

1 + βϵ
+

ϵω

1 + ϵ

)∫ θ̄

θ
π̃Zdθ = −

θϵ

1 + ϵ

π̃(θ)

1− T ′

(
τl + ∂z∗ Ẽl − s̄l

)
,

which simplifies to:

θϵ

(1 + ϵ)2
π̃κ

1

1− T ′

(
θ
d

dθ
{Z}+ ϵ+ 1

1 + βϵ
(1− β)Z

)
+ β

(
β

1 + ϵ

1 + βϵ
+

ϵω

1 + ϵ

)∫ θ̄

θ
π̃Zdθ = − θϵ

1 + ϵ

π̃(θ)

1− T ′

(
τl + ∂z∗Ẽl − s̄l

)
.
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Differentiating the equation, we obtain:

θ2
d2

dθ2
{Z}+D1θ

d

dθ
{Z} −D0Z =

(1 + ϵ)ω

κ

(
τl + ∂z∗Ẽl − s̄l

)
D1 = 1− ω +

ϵ+ 1

1 + βϵ
(1− β)

D0 =
1 + ϵ

1 + βϵ
ω

(
(1− β) +

ω

1 + ϵ (1 + ω) + βϵ2ω
β
(
β (1 + ϵ)2 + ϵω (1 + βϵ)

))
> 0

The solution of the homogenous equation are θρ+and θ−ρ− , where ρ+, ρ− are the roots of the polynomial:

x2 + (D1 − 1)x−D0 = 0.

Since the last term of the polynomial, −D0 ,is negative (assuming that ω ≥ 1 if β > 1), ρ+, ρ− are

positive. The solution of the equation is:

Z = −C0

(
τl + ∂z∗Ẽl − s̄l

)
+ C+θ

ρ+ + C−θ
−ρ−

C0 =
(1 + βϵ) (1 + ϵ (1 + ω))(

(1− β) (1 + ϵ (1 + ω) + βϵ2ω) + ωβ
(
β (1 + ϵ)2 + ϵω (1 + βϵ)

)) > 0.

Since
∫ θ̄
θ π̃γ̃ (θ)

dV
dp̄l
dθ =

∫ θ̄
θ π̃Zdθ is positive for all θ, we have C+ ≥ 0, since 1

1−T ′
θ
z

1
v′

d
dθ

{
dV
dp̄l

}
≤ −1+ϵ

κ

(
τl + ∂z∗Ẽl − s̄l

)
for all θ, we have C+ ≤ 0 so necessarily, C+ = 0 and Z = −C0

(
τl + ∂z∗Ẽl − s̄l

)
+C−θ

−ρ− . When β ≤ 1,

ϵ, ω ≤ 1, direct algebra shows that C0 ≥ 1.

Next, we consider the case where we simply assume that G is CARA ,CRRA or linear. As a pre-

liminary, we characterize 1 − T ′, z, z∗and V at the top of the distribution. First, the tax rate above

θ0satisfies:
T ′

1− T ′ =
ϵ+ 1

ϵ

1

θπ̃

∫ θ̄

θ
(1− g) π̃dθ.

Using l’Hopital rule, we have limθ→∞ 1− T ′ = ϵω/ (1 + ϵ (1 + ω)). In addition, we have:

1

z

dz

dθ
=

ϵ

1 + ϵ (1− T ′)β z
z∗ + ϵzT ′′

1−T ′

ϵ+ 1

ϵ

1

θ

ϵ

1 + (1− T ′)β z
z∗ + ϵzT ′′

1−T ′

zT ′′

(1− T ′)2
=

(
g −

ω
∫ θ̄
θ gπ̃dθ

θπ̃

)
.

Since g is decreasing and converges to 0, we have zT ′′

1−T ′ is positive and converges to 0. In addition, it is

direct to show that limθ→∞ z = ∞, limθ→∞ (1− T ′) z/z∗ = 1, (1− T ′) z/z∗−1 = O(θ−λ̄0), with λ̄0 =
1+ϵ
1+ϵβ

and zT ′′

1−T ′ = o
(
(z∗)−β

)
. In addition, we have:

dV

dθ
=

1

θ
ψ′
(z
θ

) z
θ
=
(
1− T ′) (z∗)−β z

θ

= (z∗)−β dz
∗

dθ

1 + ϵ (1− T ′)β z
z∗ + ϵzT ′′

1−T ′

ϵ+ 1
.
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Since
1+ϵ(1−T ′)β z

z∗+
ϵzT ′′
1−T ′

ϵ+1 converges to 1+ϵβ
ϵ+1 , we have for β ≤ 1 that V ≈ 1+ϵβ

ϵ+1
(z∗)1−β

1−β at infinity, while V

converges to a constant if β > 1.

Next, consider, as before, the change of variable Z = (z∗)β−1 dV
dp̄l

; we obtain:

θϵ

(1 + ϵ)
2 π̃κ (θ)

1

(1− T ′)
2

θ

z
(z∗)

β d

dθ

{
(z∗)

1−β Z
}

+

∫ θ̄

θ

π̃g

(
γ (θ) (z∗)

1−β Z −
∫ θ

θ

π̃gγ (θ)
dV

dp̄l
dθ

)
dθ

= − θϵ

1 + ϵ

π̃(θ)

1− T ′

(
τl (θ) + ∂z∗Ẽl − s̄l

)
,

which simplifies to:

θϵ

1 + ϵ

π̃(θ)

1− T ′κ (θ)

(
1

1 + ϵ

1

1− T ′
z∗

z
θ
d

dθ
{Z}+ 1

1 + ϵ (1− T ′)β z
z∗ + ϵzT ′′

1−T ′

(1− β)Z

)

+

∫ θ̄

θ

π̃g

(
γ (θ) (z∗)

1−β Z −
∫ θ

θ

π̃gγ (θ)
dV

dp̄l
dθ

)
dθ

= − θϵ

1 + ϵ

π̃(θ)

1− T ′

(
τl (θ) + ∂z∗Ẽl − s̄l

)
,

with:

κ (θ) = 1 + ϵβ
(
1− T ′) (1− T ′) z

z∗

gγ (θ) = −gG
′′

G′ + β

((
1 +

ωϵ

1 + ϵ

)
+ (1− β)

ϵ

1 + ϵ (1− T ′)β z
z∗ + ϵzT ′′

1−T ′

(1− T ′) z

z∗

)
(z∗)β−1 .

We first bound Z and θ d
dθ {Z} using these equations. Since the integral term

∫ θ̄

θ
π̃g

(
γ (θ) (z∗)1−β Z −

∫ θ

θ
π̃gγ (θ)

dV

dp̄l
dθ

)
dθ

is positive, we obtain by Chaplygin’s theorem that Z ≤ Z̄, where Z̄ solves:

θϵ

1 + ϵ

π̃(θ)

1− T ′κ (θ)

(
1

1 + ϵ

1

1− T ′
z∗

z
θ
d

dθ

{
Z̄
}
+

ϵ

1 + ϵ (1− T ′)β z
z∗ + ϵzT ′′

1−T ′
(1− β) Z̄

)

= − θϵ

1 + ϵ

π̃(θ)

1− T ′

(
τl (θ) + ∂z∗Ẽl − s̄l

)
Z̄ (θ0) = Z (θ0)
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Using the variation of parameters for first order equations, we obtain:

Z̄ (θ) = exp

(
−
∫ θ

θ0

λ0 (ϑ)
1− β

ϑ
dϑ

)
Z (θ0)

+

∫ θ

θ0

exp

(
−
∫ θ

ϑ

λ0

(
ϑ′) 1− β

ϑ′ dϑ′
)

(1− T ′) z
z∗ (1 + ϵ)

κ (ϑ)ϑ

(
−
(
τl (ϑ) + ∂z∗Ẽl − s̄l

))
dϑ

λ0 (ϑ) =
(1− T ′) z

z∗ (1 + ϵ) ϵ

1 + ϵβ (1− T ′) z
z∗ + ϵzT ′′

1−T ′

> 0

First, consider the case β < 1. Since λ0 (ϑ), κ (ϑ), (1− T ′) z
z∗ and τl (ϑ) converge to positive constant

at infinity (respectively λ̄0 = (1+ϵ)ϵ
1+ϵβ , κ̄ = 1 + ϵβ (1− T ′) , 1 and τ̄l = ∂z∗el − ∂z∗Ẽl), we have for θ0 large

enough and δ small,

Z̄ (θ) ≤ |Z (θ0)|
(
θ

θ0

)−λ̄0(1−β)+δ

+(1 + δ)
(1 + ϵ)

κ̄

(
−
(
τ̄l + ∂z∗Ẽl − s̄l

)) 1

λ̄0 (1− β)

(
1−

(
θ

θ0

)−λ̄0(1−β)+δ
)
.

So we have, for θ large enough, that Z̄ (θ) is bounded above by a positive constant, so Z (θ) is bounded

above by a positive constant Z∗. With G as CARA ,CRRA or linear, we have gG′′

G′ (z∗)
1−β = o

(
z∗

−β
)
,

g = o
(
z∗

−β
)
, so gγ (θ) (z∗)1−β = O(1), which implies that:

(
θϵ

1 + ϵ

π̃(θ)

1 − T ′

)−1 ∫ θ̄

θ
π̃g

(
γ (θ)

(
z
∗)1−β Z −

∫ θ

θ
π̃gγ (θ)

dV

dp̄l
dθ

)
dθ ≤

(
θϵ

1 + ϵ

π̃(θ)

1 − T ′

)−1 ∫ θ̄

θ
π̃g

(
γ (θ)

(
z
∗)1−β Z̄ (θ) −

∫ θ

θ
π̃gγ (θ)

dV

dp̄l
dθ

)
dθ ≤ MZ∗

.

We therefore have, applying again Chaplygin’s theorem, that Z (θ) ≥ Z (θ), where Z (θ) solves:

θϵ

1 + ϵ

π̃(θ)

1 − T ′
κ (θ)

 1

1 + ϵ

1

1 − T ′
z∗

z
θ

d

dθ
{Z} +

ϵ

1 + ϵ (1 − T ′) β z
z∗ + ϵzT ′′

1−T ′
(1 − β)Z

 = −
θϵ

1 + ϵ

π̃(θ)

1 − T ′

(
τl (θ) + ∂z∗ Ẽl − s̄l − MZ∗

)
,

which implies, as before, that Z (θ) ≥ Z (θ) ≥ Z∗. We therefore have that, for β < 1, Z (θ) is bounded,

which directly implies that θ d
dθ {Z} is bounded.

For β > 1 using the same reasoning, we obtain Z̄ (θ) = O
(
θλ̄0(β−1)

)
, which implies, since gγ (θ) (z∗)1−β =

O(1):

Z (θ) ≤Mθλ̄0(β−1)(
θϵ

1 + ϵ

π̃(θ)

1− T ′

)−1 ∫ θ̄

θ
π̃g

(
γ (θ) (z∗)1−β Z −

∫ θ

θ
π̃gγ (θ)

dV

dp̄l
dθ

)
dθ ≤Mθλ̄0(β−1)

for some M large enough. Applying Chaplygin’s theorem once more for a lower bound, we therefore

obtain |Z (θ)| ≤Mθλ̄0(β−1), which implies by direct inspection of the equations
∣∣θ d

dθ {Z}
∣∣ ≤Mθλ̄0(β−1).

Finally, using the same steps as before in the case β = 1, we obtain |Z (θ)| ,
∣∣θ d

dθ {Z}
∣∣ ≤ ln (θ).

Next, we differentiate the equation

θϵ

1 + ϵ

π̃(θ)

1 − T ′
κ (θ)

 1

1 + ϵ

1

1 − T ′
z∗

z
θ

d

dθ
{Z} +

1

1 + ϵ (1 − T ′) β z
z∗ + ϵzT ′′

1−T ′
(1 − β)Z

 +

∫ θ̄

θ
π̃g

(
γ (θ)

(
z
∗)1−β Z −

∫ θ

θ
π̃gγ (θ)

dV

dp̄l
dθ

)
dθ

= −
θϵ

1 + ϵ

π̃(θ)

1 − T ′

(
τl (θ) + ∂z∗ Ẽl − s̄l

)
.
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We obtain:

θ
2 d2

dθ2
{Z} + (D1 + δ1 (θ)) θ

d

dθ
{Z} − (D0 + δ0 (θ))Z =

(1 + ϵ)ω

κ

(
τl + ∂z∗ Ẽl − s̄l

)
+ δ (θ)

δ1 (θ) =
(
1 − T

′
) z

z∗
θ

d

dθ

{
1

1 − T ′
z∗

z

}
+ θ

d

dθ

{
1

1 − T ′

}

+
1

κ
θ

d

dθ
{κ (θ)} + ϵ

ϵ + 1

1 + βϵ
(1 − β)

β
(
1 −

(
1 − T ′) z

z∗
)
− ϵzT ′′

1−T ′

1 + ϵ (1 − T ′) β z
z∗ + ϵzT ′′

1−T ′

δ0 (θ) =

(1 − β) (1 + ϵ)
(
1 − T ′) z

z∗ Z

−ω + θ d
dθ

{
1

1−T ′
}

+ 1
κ
θ d
dθ

{κ (θ)} −
βθ d

dθ

{
1

1−T ′
z∗
z

}
+θ d

dθ

{
zT ′′
1−T ′

}
1+ϵ(1−T ′)β z

z∗ + ϵzT ′′
1−T ′


1 + ϵ (1 − T ′) β z

z∗ + ϵzT ′′
1−T ′

−
(1 + ϵ)2

ϵ

1 − T ′

κ (θ)

(
1 − T

′
) z

z∗
gγ (θ)

(
z
∗)1−β − D1

δ (θ) =
(1 + ϵ)2

ϵ

1 − T ′

κ (θ)

(
1 − T

′
) z

z∗
g

∫ θ

θ
π̃gγ (θ)

dV

dp̄l
dθ

= −
1 + ϵ

κ (θ)

(
1 − T

′
) z

z∗

(
−ω + θ

d

dθ

{
1

1 − T ′

})(
τl (θ) + ∂z∗ Ẽl − s̄l

)
+

1 + ϵ

κ (θ)

(
1 − T

′
) z

z∗
θ

d

dθ
{τl (θ)} −

(1 + ϵ)ω

κ

(
τl + ∂z∗ Ẽl − s̄l

)
.

It is direct to show, using our asymptotic characterization of the initial tax rate, that δ1 (θ) = O
(
θ−λ̄0

)
,

δ0 (θ) = O
(
θ−λ̄0

)
and δ (θ) converges to 0. Indeed, the dominant term of δ1 (θ) and δ0 (θ) is

θ
d

dθ

{
1

1− T ′
z∗

z

}
=

(ϵ+ 1)

1 + ϵ (1− T ′)β z
z∗ + ϵzT ′′

1−T ′

(
(1− T ′) z

z∗
− 1 +

zT ′′

1− T ′

)
,

which converges to 0 at rate θ−λ̄0 . Using the variation of parameters for second order equations, we

therefore have:

Z = −C0

(
τl + ∂z∗Ẽl − s̄l

)
+ C+θ

ρ+ + C−θ
−ρ−

− 1

ρ+ + ρ−

∫ (
θ−ρ− θ̂ρ−−1 − θρ+ θ̂−ρ+−1

)(
δ
(
θ̂
)
+ δ0

(
θ̂
)
Z + δ1

(
θ̂
)
θ̂
d

dθ
{Z}

)
dθ̂.

First note that, since δ
(
θ̂
)
goes to 0, we have

∫ (
θ−ρ− θ̂ρ−−1 − θρ+ θ̂−ρ+−1

)
δ
(
θ̂
)
dθ̂ = o (1) . Next if β < 1,

we have Z, θ d
dθ {Z} = O (1), which implies

∫ (
θ−ρ− θ̂ρ−−1 − θρ+ θ̂−ρ+−1

)(
δ0

(
θ̂
)
Z + δ1

(
θ̂
)
θ̂ d
dθ {Z}

)
dθ̂ =

o (1) and Z converges to −C0

(
τl + ∂z∗Ẽl − s̄l

)
, since as before C+ is necessarily 0. If β > 1, we have∣∣δ0 (θ)Z + δ1 (θ) θ

d
dθ {Z}

∣∣ ≤Mθλ̄0(β−2), so∫ (
θ−ρ− θ̂ρ−−1 − θρ+ θ̂−ρ+−1

)(
δ
(
θ̂
)
+ δ0

(
θ̂
)
Z + δ1

(
θ̂
)
θ̂
d

dθ
{Z}

)
dθ̂ ≤ Nθλ̄0(β−2).

Direct inspection shows that ρ+ > λ̄0 (β − 2), so using the same reasoning as before, we have C+ =

0. This implies Z = −C0

(
τl + ∂z∗Ẽl − s̄l

)
+ C−θ

−ρ− + O
(
θλ̄0(β−2)

)
. If β < 2, we have Z con-

verges to −C0

(
τl + ∂z∗Ẽl − s̄l

)
, otherwise, noting that |Z| ≤ Mθλ̄0(β−2) directly implies

∣∣θ d
dθ {Z}

∣∣ ≤
Mθλ̄0(β−2) , we obtain

∣∣δ0 (θ)Z + δ1 (θ) θ
d
dθ {Z}

∣∣ ≤ Mθλ̄0(β−3). Reiterating our operation, if β < 3, we

have Z converges to −C0

(
τl + ∂z∗Ẽl − s̄l

)
; otherwise by direct induction, we obtain Z converges to

−C0

(
τl + ∂z∗Ẽl − s̄l

)
. □
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E.3.2 General equilibrium results

In this subsection, we characterize the general equilibrium responses of the tax schedule to shifts in

the supply curves when pricing and cost functions are non-linear. We follow the same approach as in

Proposition A1 of Appendix A: we decompose the welfare response dV/dξ into a sum of n + 1 partial

equilibrium components, each of which can be computed independently of the supply-side response. These

partial equilibrium components allow us to directly compute changes in aggregate consumption, dC/dξ,

in Lemma E1, and to recover the change in equilibrium prices dqk/dξ through matrix inversion.

Due to the complexity of the formulas involved, we conclude the section with an intuitive discussion

of how the optimal schedule responds to increases in the price elasticity α.

As a direct consequence of Proposition E2, we can decompose the welfare response to an exogenous

supply shock ξ as:

dV

dξ
(θ) =

n∑
k=1

∂V

∂qk
(θ)

(
1

qk

dqk
dξ

− 1

1− tw

dtw
dξ

)
− ∂V

∂B
(θ)

n∑
i=1

∂χi

∂ξ
.

Here, ∂V
∂qk

denotes the change in welfare to an increase in the price of k keeping the government budget

fixed. It satisfies:

θϵ

(1 + ϵ)2
π̃κ (θ)

1

(1− T ′)2
θ

z

1

v′
d

dθ

{
∂V

∂qk

}
+ (1− tw)

∫ θ̄

θ
π̃g

(
γ (θ)

∂V

∂qk
−
∫ θ

θ
π̃gγ (θ)

∂V

∂qk
dθ

)
= −

ϵ

1 + ϵ

θπ̃(θ)

1− T ′

(
τk (θ) + ∂z∗ Ẽk

)
(1− tw)

∫ θ̄

θ
g
1

v′
∂V

∂qk
πdz = 0.

Note that defining ∂V
∂tw

the (partial equilibrium) response of welfare to an increase in the corrective tax

tw, as the solution of:

θϵ

(1 + ϵ)2
π̃κ (θ)

1

(1− T ′)2
θ

z

1

v′
d

dθ

{
∂V

∂tw

}
+ (1− tw)

∫ θ̄

θ
π̃g

(
γ (θ)

∂V

∂tw
−
∫ θ

θ
π̃gγ (θ)

∂V

∂tw
dθ

)
=

ϵ

1 + ϵ

θπ̃(θ)

1− T ′

(1− tw)

∫ θ̄

θ
g
1

v′
∂V

∂tw
πdz = 0,

we have ∂V
∂tw

= −
∑n

k=1
∂V
∂qk

, so ∂V
∂tw

need not be computed separately.

Finally, ∂V
∂B denotes the welfare sensitivity to a relaxation of the government’s budget constraint. It

satisfies:

θϵ

(1 + ϵ)2
π̃κ (θ)

1

(1− T ′)2
θ

z

1

v′
d

dθ

{
∂V

∂B

}
+ (1− tw)

∫ θ̄

θ
π̃g

(
γ (θ)

∂V

∂B
−
∫ θ

θ
π̃gγ (θ)

∂V

∂B
dθ

)
= 0

(1− tw)

∫ θ̄

θ
g
1

v′
∂V

∂tw
πdz = 1.

With these definitions in hand, we can characterize the response of aggregate consumption to supply
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shocks as a function of the partial equilibrium response of welfare to price and budget changes. We do so

in the following lemma, which is a generalization of lemma A3.

Lemma E1. The change in aggregate consumption in response to an exogenous supply change dξ is given

by:

1

Ci

dCi

dξ
=

n∑
j=1

qj∂Ci

Ci∂qj

(
1

qk

dqk
dξ

− 1

1− tw

dtw
dξ

)
− ∂Ci

Ci∂B

n∑
i=1

∂χi

∂ξ

qj∂Ci

Ci∂qj
≡ 1

1− tw

1

Ẽk

∫ θ̄

θ

d

dθ

{
∂V

∂qj

}
1

1− T ′
θϵ

1 + ϵ

(
τk + ∂z∗Ẽk

)
π̃dθ + Si,j

∂Ci

Ci∂B
≡ 1

1− tw

1

Ẽk

∫ θ̄

θ

d

dθ

{
∂V

∂B

}
1

1− T ′
θϵ

1 + ϵ

(
τk + ∂z∗Ẽk

)
π̃dθ +

1

1− tw

∂z∗Ẽi

Ei
,

with Ẽi =
∫ θ
θ eiπ̃dθ.

Proof of Lemma E1. We follow the same steps as in Lemma A3. We have:

1

Ck

dCk

dξ
=

1

Ck

∫ θ̄

θ

dck

dξ
πdθ

=
1

Ck

∫ θ̄

θ
∂z∗ck

 dz∗

dξ
−

n∑
l=1

cl
dql

dξ

πdθ +
1

Ck

n∑
l=1

∫ θ̄

θ
∂pl

c
h
k

dql

dξ
πdθ

=
1

Ck

∫ θ̄

θ
∂z∗ck

(
1

vz∗

dV

dξ
+
(
1 − T

′
) dz

dξ

)
πdθ +

n∑
l=1

Skl

1

ql

dql

dξ

=
1

Ẽk

∫ θ̄

θ

d

dθ

{
dV

dξ

}∫ θ̄

θ

(
∂z∗ek − ∂z∗ Ẽk

)
π̃dθ +

∂z∗ Ẽk

Ẽk

∫ θ̄

θ

dV

dξk
π̃dθ +

1

Ẽk

∫ θ̄

θ
∂z∗ek

θϵ

1 + ϵ

d

dθ

{
dV

dξ

}
π̃dθ +

n∑
l=1

Skl

1

ql

dql

dξ
,

with Ẽk =
∫ θ̄
θ ekπ̃dθ and where we used, from the IC-FOC, v′ (1− T ′) dz(θ)

dξ = θϵ
1+ϵ

d
dθ

{
dV
dξ

}
. Next, using

the government budget constraint (see the proof of Proposition E1), we have:

∫ θ̄

θ
(1− tw)

1

v′
π
dV

dξ
− d

dθ

{
dV

dξ

}(
T ′

1− T ′ + tw

)
θϵ

1 + ϵ

1

v′
πdθ = −

n∑
i=1

∂χi

∂ξ
.

Using this expression, we have:

1

Ck

dCk

dξ
=

1

Ẽk

∫ θ̄

θ

d

dθ

{
dV

dξ

}∫ θ̄

θ

(
∂z∗ek − ∂z∗ Ẽk

)
π̃dθ +

1

1− tw

∂z∗ Ẽk

Ẽk

(∫ θ̄

θ

d

dθ

{
dV

dξ

}(
T ′

1− T ′ + tw

)
θϵ

1 + ϵ
π̃dθ

)

+
1

Ẽk

∫ θ̄

θ
∂z∗ek

θϵ

1 + ϵ

d

dθ

{
dV

dξ

}
π̃dθ

−
1

1− tw

∂z∗ Ẽk

Ek

n∑
i=1

∂χi

∂ξ
+

n∑
l=1

Skl
1

ql

dql

dξ

=
1

(1− tw)

1

Ẽk

∫ θ̄

θ

d

dθ

{
dV

dξ

}
1

1− T ′
θϵ

1 + ϵ
π̃

(
(1− tw)

(
1− T ′)(1 + ϵ

ϵ

1

θπ̃θ)

∫ θ̄

θ

(
∂z∗ek − ∂z∗ Ẽk

)
π̃dθ + ∂z∗ek − ∂z∗ Ẽk

)
+ ∂z∗ Ẽk

)
dθ

−
1

1− tw

∂z∗ Ẽk

Ek

n∑
i=1

∂χi

∂ξ
+

n∑
l=1

Skl
1

ql

dql

dξ

=
1

(1− tw)

1

Ẽk

∫ θ̄

θ

d

dθ

{
dV

dξ

}
1

1− T ′
θϵ

1 + ϵ
π̃
(
τk + ∂z∗ Ẽk

)
dθ −

1

1− tw

∂z∗ Ẽk

Ek

n∑
i=1

∂χi

∂ξ
+

n∑
l=1

Skl
1

ql

dql

dξ
.
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Using the fact that dV
dξ (θ) =

∑n
k=1

∂V
∂qk

(θ)
(

1
qk

dqk
dξ − 1

1−tw
dtw
dξ

)
− ∂V

∂B (θ)
∑n

i=1
∂χi

∂ξ and
∑

j Si,j = 0 then

gives the decomposition of the lemma.□

Using the partial equilibrium welfare responses and the aggregate demand adjustments derived above, we

now characterize the general equilibrium response of the optimal tax rates. To derive these results, we

must first define the relevant supply-side elasticities that govern the equilibrium adjustment in prices.

In particular, in addition to the standard price elasticity with respect to market size, we also need to

introduce the super-elasticity of supply with respect to market size. This is necessary because demand

shifts also affect the elasticity itself, altering the slope of the supply curve in equilibrium. The super-

elasticity captures how the elasticity changes as the market expands, and thus play a role in determining

how prices adjust in response to supply shocks.

Definition. Recall that A is the matrix of price elasticities with respect to market sizes with Ai,j =

−Cj∂Cjϕ (C1, ..., Cn, ξ) /pi. We define ai,j,l ≡ Cl∂lAi,j/Ai,j the super-elasticity of prices with respect to

market sizes and A the matrix with entries Ai,l =
∑N

j=1Aj,iaj,i,l
pjCj

piCi
. The matrix A summarizes how a

change in the market size of l impact the externality of an increase in the demand for i on the average

producer price. Denote ∆
[
(1 + ti)

−1
]
the diagonal matrix with (1 + ti)

−1 on the diagonal (and similarly

∆ [piCi], ∆
[
(piCi)

−1
]
) and define:

Am ≡ Id− 1

1− α
∆
[
(1 + ti)

−1
] ((

Id−∆ [piCi]A
T∆

[
(piCi)

−1
])

(Id−A)− A
)

Ac ≡ A

Ci,j ≡
qj∂Ci

Ci∂qj

The matrices Am and Ac summarize the relevant supply side elasticity in the monopolistic and competitive

cases respectively while C summarizes the demand size elasticities.

The equilibrium responses of prices and of tw can then simply be obtained as a function of Am, Ac

and C.
Proposition E4. Consider a change in the parameters ξ and define ∂pi/∂ξ ≡ ∂ϕi (C1, ..., CN , ξ) /∂ξ,

∂Ai,j/∂ξ ≡ ∂
(
∂lnCj

lnϕi (C1, ..., CN , ξ)
)
/∂ξ. The change in the utility of households in response to a

change in ξ is given by:

dV

dξ
(z) =

n∑
i=1

qi
∂V

∂qi
(z)

1

qi

dqi
dξ

− ∂V

∂B
(z)

n∑
i=1

∂χi

∂ξ
,

where the endogenous price vector 1
q
dq
dξ

=
[

1
q1

dq1
dξ , ...,

1
qn

dqn
dξ

]
solves:

1

q

dq

dξ
= (Id+AC)−1

(
1

q

∂q

∂ξ
+

n∑
i=1

∂χi

∂ξ
A

∂C

C∂B

)
,

where ∂qi/∂ξ = ∂pi/∂ξ, A = Ac in the competitive case and ∂qi/∂ξ = (1 + ti) ∂pi/∂ξ− pi
(1−α)

∑N
j=1

pjCj

piCi

∂Aj,i

∂ξ ,A =
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Am in the monopolistic case. The change in taxes in the competitive case is given by:

dT

dξ
= − 1

v′
dV

dξ
−

n∑
i=1

ei
1

qi

dqi
dξ
,

and in the monopolistic case by:

dT

dξ
= − 1

v′
dV

dξ
−

n∑
i=1

ei

(
1

qi

dqi
dξ

+
1

1− α

dα

dξ

)
1

1− α

dα

dξ
=

1

1− α

∂α

∂ξ
− sT

(
(Id−A)−∆

[
(1 + ti)

−1
]
(Id−A)

)C
1

q

dq

dξ
−

 N∑
j=1

pjCj
1

pj

∂pj
∂ξ

 ∂C

C∂B

 .

Proof of Proposition E4. Let us start with the competitive case. There are no consumption taxes in

that case and we have qi = pi = ϕi (C1, ..., CN , ξ). In addition, tw = 0 and dtw/dξ=0. We therefore have:

1

qi

dqi
dξ

=
1

pi

∂pi
∂ξ

−
N∑
j=1

Ai,j
1

Cj

dCj

dξ

=
1

pi

∂pi
∂ξ

−
N∑
j=1

Ai,j

 n∑
j=1

qj∂Ci

Ci∂qj

1

qk

dqk
dξ

− ∂Ci

Ci∂B

n∑
i=1

∂χi

∂ξ

 .

Therefore, we have

1

q

dq

dξ
= (Id+AC)−1

(
1

q

∂q

∂ξ
+

n∑
i=1

∂χi

∂ξ
A

∂C

C∂B

)
,

with A = A and 1
q
∂q
∂ξ = 1

p
∂p
∂ξ . Next, consider the monopolistic case. Recall from Proposition A.1. that

we have qi = pi
1−
∑

j Aj,ipjCj/piCi

1−α with 1 + ti =
1−
∑

j Aj,ipjCj/piCi

1−α , defining 1/qidq̃i/dξ = 1/qidqi/dξ − 1/
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(1− α) dα/dξ, we have:

1

qi

dq̃i
dξ

=
1

pi

∂pi
∂ξ

− 1

(1 + ti) (1− α)

n∑
j=1

pjCj

piCi

∂Aj,i

∂ξ

−
n∑

j=1

Ai,j
1

Cj

dCj

dξ
+

1− (1 + ti) (1− α)

(1 + ti) (1− α)

 1

Ci

dCi

dξ
−

n∑
j=1

Ai,j
1

Cj

dCj

dξ


− 1

(1 + ti) (1− α)

n∑
j=1

Aj,i
pjCj

piCi

(
1

Cj

dCj

dξ
−

n∑
l=1

Aj,l
1

Cl

dCl

dξ

)

− 1

(1 + ti) (1− α)

n∑
j=1

Aj,i
pjCj

piCi

n∑
l=1

aj,i,l
1

Cl

dCl

dξ

=
1

pi

∂pi
∂ξ

− 1

(1 + ti) (1− α)

n∑
j=1

Ai,j
pjCj

piCi

1

Ai,j

∂Ai,j

∂ξ

− 1

Ci

dCi

dξ

+
1

(1 + ti) (1− α)

 1

Ci

dCi

dξ
−

n∑
j=1

Ai,j
1

Cj

dCj

dξ
−

n∑
j=1

Aj,i
pjCj

piCi

(
1

Cj

dCj

dξ
−

n∑
l=1

Aj,l
1

Cl

dCl

dξ

)
−

n∑
l=1

Ai,l
1

Cl

dCl

dξ

 ,

where we used pi = ϕ (C1, ..., CN , ξ) . In matrix form, denoting 1
q
dq̃
dξ

=
[

1
q1

dq̃1
dξ , ...,

1
qN

dq̃N
dξ

]
, and simi-

larly 1
C

dC
dξ

, ∆
[
(1 + ti)

−1
]
the diagonal matrix with (1 + ti)

−1 on the diagonal – and similarly ∆ [piCi],

∆
[
(piCi)

−1
]
and defining 1

qi
∂qi
∂ξ = 1

pi
∂pi
∂ξ − 1

(1+ti)(1−α)

∑N
j=1

pjCj

piCi

∂Aj,i

∂ξ – ,we have:

1

q

dq̃

dξ
=

1

q

∂q

∂ξ
−
(
Id− 1

1− α
∆
[
(1 + ti)

−1
] ((

Id−∆ [piCi]A
T∆

[
(piCi)

−1
])

(Id−A)− A
)) 1

C

dC

dξ
.

Next using the result of Lemma E1, we have, noting that tw = α:

1

Ci

dCi

dξ
=

n∑
j=1

(
qj∂Ci

Ci∂qj

(
1

qj

dqi
dξ

− 1

1− α

dα

dξ

)
− ∂Ci

Ci∂B

n∑
i=1

∂χi

∂ξ

)

=

N∑
j=1

(
qj∂Ci

Ci∂qj

1

qi

dq̃i
dξ

− ∂Ci

Ci∂B

n∑
i=1

∂χi

∂ξ

)
.

Defining Ci,j ≡ qj∂Ci

Ci∂qj
, A ≡ Id − 1

1−α∆
[
(1 + ti)

−1
] ((

Id−∆ [piCi]A
T∆

[
(piCi)

−1
])

(Id−A)− A
)
, we

obtain

1

q

dq̃

dξ
=

1

q

∂q

∂ξ
−AC

1

q

dq̃

dξ
+

n∑
i=1

∂χi

∂ξ
A

∂C

C∂B

⇒
1

q

dq̃

dξ
= (Id+AC)−1

(
1

q

∂q

∂ξ
+

n∑
i=1

∂χi

∂ξ
A

∂C

C∂B

)
.

Recall that we have:
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dV

dξ
=

n∑
i=1

qi
∂V

∂qi

(
1

qk

dqk
dξ

− 1

1− tw

dtw
dξ

)
− ∂V

∂B

n∑
i=1

∂χi

∂ξ

=
n∑

i=1

qi
∂V

∂q̄i

1

qi

dq̃i
dξ

− ∂V

∂B

n∑
i=1

∂χi

∂ξ
,

which gives the formula. Finally, we have:

α =

∑n
i=1 piCi

∑n
j=1Ai,j∑N

i=1 piCi

.

So the change in average price elasticity with respect to market size is given by:

dα

dξ
=

∑N
i=1 piCi

∑N
j=1

(
Aj,i

pjCj

piCi
− α⊮(i = j)

)
1
pj

∂pj
∂ξ∑N

i=1 piCi

+

∑N
i=1 piCi

∑N
j=1

∂Aj,i

∂ξ∑N
i=1 piCi

+

∑N
i=1

(
1
Ci

dCi
dξ −

∑N
j=1Ai,j

1
Cj

dCj

dξ

)
piCi

∑N
j=1Ai,j∑N

i=1 piCi

+

∑N
i=1 piCi

∑N
j=1Aj,i

pjCj

piCi

∑N
l=1 aj,i,l

1
Cl

dCl
dξ∑N

i=1 piCi

− α

∑N
i=1

(
1
Ci

dCi
dξ −

∑N
j=1Ai,j

1
Cj

dCj

dξ

)
piCi∑N

i=1 piCi

=
N∑
i=1

si
1 + ti

 N∑
j=1

Aj,i
pjCj

piCi
− α⊮(i = j)

 1

pj

∂pj
∂ξ

+
N∑
i=1

si
1 + ti

N∑
j=1

∂Aj,i

∂ξ

+
N∑
i=1

si
1 + ti

N∑
j=1

(
Aj,i

pjCj

piCi
− α⊮(i = j)

) 1

Cj

dCj

dξ
−

N∑
j=1

Aj,l
1

Cl

dCl

dξ

+
N∑
i=1

si
1 + ti

N∑
l=1

Ai,l
1

Cl

dCl

dξ
.

Defining ∂α/∂ξ =
∑N

i=1 (si/ (1 + ti))
∑N

j=1

((
Aj,i

pjCj

piCi
− α⊮(i = j)

)
1
pj

∂pj
∂ξ +

∂Aj,i

∂ξ

)
, we therefore have

in matrix form:

dα

dξ
=
∂α

∂ξ
+ sT∆

[
(1 + ti)

−1
] ((

∆ [piCi]A
T∆

[
(piCi)

−1
]
− αId

)
(Id−A) + A

) 1

C

dC

dξ

1

1− α

dα

dξ
=

1

1− α

∂α

∂ξ
− sT

(
(Id−A)−∆

[
(1 + ti)

−1
]
(Id−A)

)C
1

q

dq̃

dξ
−

 N∑
j=1

pjCj
1

pj

∂pj
∂ξ

 ∂C

C∂B

 .

Using the fact that dV/dξ = −v′
(
dT/dξ +

∑N
i=1 cidqi/dξ

)
gives the final expression of the proposition.□

Proposition E4 generalizes the formulas of Proposition A1. As can be seen from the formulas, a change

in the return to scale parameter α has an effect on optimal taxes. To better understand their impact,

consider a simple example with two sectors and where the market size elasticity α is common across sec-

tors. As prices become more sensitive to market size (e.g., α increases), the planner implements a larger

wage subsidy. As explained in Proposition A1, the subsidy incentivizes labor supply, aggregate income
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increases, and all prices decrease. A naive interpretation of Proposition A1 suggests that this corrective

wage subsidy can be implemented independently from redistributive policies: since the wage subsidy is

1/(1 − α), the derivative of the tax rate with respect to α would then simply be dT ′/dα = −(1 − T ′)/

(1−α). Our comparative statics results unveil a subtler interaction. A higher wage subsidy is equivalent

to a homogeneous reduction in prices. As seen in section 4.3, this implies that the share of luxuries

increases while the share of necessities decreases. The relative price of luxuries therefore decreases. This

triggers a readjustment of optimal redistribution policies, with more redistribution toward higher income

households.

To see this explicitly, consider an application of Proposition E4 in our benchmark two-good example

with Assumption A1 and A2. We find that commodity taxes are optimally set to zero and that the

response of the income tax to an increase in α is:

dT ′

dα
=

Wage Subsidy︷ ︸︸ ︷
−1− T ′

1− α
−

Redistribution Induced by Price Changes︷ ︸︸ ︷
∂T ′

∂ph

(
1

ph

dph
dα

− 1

pl

dpl
dα

)
with

1

ph

dph
dα

− 1

pl

dpl
dα

=
1

1− α

αζ
1−α

1− αζ
1−α

Ez(∂z∗El − sl + τl)

shsl(1− ασ)
(
1− αζ

1−αΩ
) .

Thus, when prices become more elastic to demand, the tax schedule becomes more regressive not only

because of the corrective wage subsidy, but also because of the change in redistribution policies it induces.

When ∂z∗El − sl ≤ 0,5 the wage subsidy reduces the relative price of the luxury good. Note that this

reduction is exactly the same as the one generated by an exogenous decrease in all producer prices of

1/(1 − α) percent, which corresponds to the increase in the wage subsidy. The price decrease is then

amplified by general equilibrium effects6 and further decreases tax rates according to ∂qhT
′, as it becomes

more valuable to redistribute towards higher income households. The interaction between corrective and

redistributive taxation is therefore non trivial and works through prices. When prices instead become

less sensitive to demand, the wage subsidy is lowered, the relative price of the necessity good decreases,

which makes redistribution towards lower income households socially more valuable. A general lesson is

that corrective and redistributive taxation cannot be conducted independently when prices are elastic.

5Or, alternatively, when the share of luxuries eh(z
∗)/z∗ increases along the income distribution.

6As before, this amplification is larger when the elasticity of substitution σ, the initial price elasticity α and non-
homothecities are stronger.
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