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Abstract

How should we measure changes in consumer welfare given observed data on prices and
expenditures? This paper proposes a nonparametric approach that holds under arbitrary
preferences that may depend on observable consumer characteristics, e.g., when expendi-
ture shares vary with income. Using total expenditures under a constant set of prices as our
money-metric for real consumption (welfare), we derive a principled measure of real con-
sumption growth featuring a correction term relative to conventional measures. We show
that the correction can be nonparametrically estimated with an algorithm leveraging the
observed, cross-sectional relationship between household-level price indices and household
characteristics such as income. We demonstrate the accuracy of our algorithm in simula-
tions. Applying our approach to data from the United States, we find that the magnitude
of the correction can be large due to the combination of fast growth and lower inflation for
income-elastic products. Setting reference prices in 2019, we find that (i) aggregate real con-
sumption per household in 1955 is underestimated by 11.5% by the uncorrected measure, and
(i1) the correction reduces the annual growth rate from 1955 to 2019 by 18 basis points, which

is larger than the well-known “expenditure switching bias” over the same time horizon.
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1 Introduction

How should we measure long-run changes in consumer welfare? Classical demand theory shows
that intuitive index number formulas, which aggregate observed changes in consumed quantities
and prices, may provide precise measures of the change in living standards. However, this power-
ful insight requires the crucial assumption that the composition of demand remains independent
of consumer income (see, e.g., Diewert, 1993). This so-called homotheticity assumption runs
counter to the empirical regularity that demand for many goods and services systematically de-
pends on income, a fact known since at least Engel (1857). It also belies the growing empirical
evidence on sizable differences in the rates of inflation in the cost-of-living experienced by differ-
ent income groups in the United States, with lower inflation rates for higher-income groups.'

Despite this important and well-known theoretical limitation, classical price index formulas
remain widely used in practice due to their simplicity, flexibility, and generality. Little is known
about potential biases arising from the restrictive homotheticity assumption in the resulting mea-
sures of long-run growth in living standards. Current alternatives require us to specify and es-
timate the structure of the demand system-a task that leaves open many questions about the
choices of functional forms and identification strategy. For instance, Baqaee and Burstein (2021)
have recently offered an approach that relies on the knowledge of the elasticities of substitution
across goods to construct measures of welfare growth (see also Samuelson and Swamy, 1974).

In this paper, we develop a novel approach for measuring welfare change that allows for flexi-
ble dependence of the patterns of demand on income and other sources of observed heterogene-
ity without the need for functional form assumptions. Compared to the standard setting, the
only additional data requirement is access to a cross-section of product prices and quantities for
consumers with heterogenous incomes. Such data is widely available through standard surveys
of consumption expenditure. Our approach nonparametrically estimates the cross-sectional de-
pendence of measured price index formulas on consumer income, which we show is sufficient
to provide precise approximations for a theoretically-consistent measure of real consumption.
The approach remains valid for any continuously differentiable preferences under any observ-
able source of heterogeneity. We apply our method to account for nonhomotheticity of demand
in measuring growth in consumer welfare in the United States from 1955 to 2019. In addition
to improving the measurement of long-run growth and inflation inequality, our new approach
can have important policy implications, such as the indexation of the poverty line and a more
efficient targeting of welfare benefits. This approach also provides a blueprint for distributional

national accounts (Piketty et al., 2018) that allow for nonhomotheticity and inflation inequality.

ISee, for example, Kaplan and Schulhofer-Wohl (2017), Jaravel (2019), Argente and Lee (2021), Klick and Stock-
burger (2021), and Jaravel (2021).



We begin with the basic theory of the exact measurement of welfare change under stable pref-
erences along a path of smoothly changing prices. We define real consumption as the expenditure
required to achieve a certain level of welfare under constant prices fixed at a base period. Given
this definition, there exists a mapping from real consumption to total consumer expenditure at
any point in time. The Divisia index, a standard measure of the change in the cost-of-living, is
typically defined as the expenditure-share-weighted mean price growth across goods at any point
in time. Since in our setting expenditure shares generically depend on the total expenditure of
consumers, we define this index as a function of total expenditure. When preferences are homo-
thetic, growth in real consumption is given by growth in total consumer expenditure, deflated by
the value of the Divisia index at any point in time, which is constant and independent of expen-
diture. Since index formulas approximate the Divisa index for each consumer in the data, they
thus allow us to use this result to measure real consumption growth under homotheticity.

We show that, under more general preferences, we can recover the mapping between real con-
sumption and total expenditure as a differential equation defined in the terms of the Divisia index
function. This result further implies that we need to multiply the deflated total expenditure by a
nonhomotheticity correction factor. This correction is governed by the elasticity of the mapping
between real consumption and total expenditure for the consumer at any point in time. Under
homotheticity, this mapping is always linear, therefore the elasticity and the correction factor are
both exactly unity. More generally, however, the convexity of the mapping changes over time
and the correction factor nontrivially deviates from unity if price inflation varies with income
elasticities across goods.

To see the intuition behind this correction, consider a setting where consumer welfare is rising
over a time horizon during which inflation rates are lower for goods with higher income elasticity
(luxuries). Fixing prices in the initial period as our base, real consumption is by definition linear
in (and identical to) total expenditure in the initial period. As time passes, the relative cost of
achieving higher levels of real consumption falls, since relative prices are falling for goods more
heavily consumed by consumers as they become richer. In other words, the mapping betwen real
consumption and total expenditures becomes more concave over time. Thus, a given rise in total
expenditure translates into increasingly larger gains in real consumption as consumers become
richer. The conventional approach assumes a linear mapping, and thus ignores the gradual fall in
its curvature, leading to an underestimation of the growth of real consumption under the initial

base period in this case.” Our nonhomotheticity correction accounts for changes in the curvature

21f we instead express real consumption in terms of constant final period prices as our base, the same logic implies
that conventional approach overestimate the growth in all preceding periods. In this case, since total consumer
expenditure is identical to real consumption in the final period, it must be a convex function of real consumption in
all prior periods. This leads to overestimating the growth of real consumption when using the final period as base.
In Section 2.2, we show formally that the sign of the bias in growth measurement induced by the nonhomotheticity



of this mapping to accurately measure growth in terms of any base period.

We next use this theory to provide approximate measures of welfare change in settings in-
volving discrete observations of consumer choices, where we do zot know the underlying pref-
erences. The key observation is that we can use cross-sectional variations in the price index for-
mulas, across consumers/households with different levels of income, to approximate the Divisia
index as a function of total expenditure. We use this insight to provide algorithms that nonpara-
metrically approximate the nonhomotheticity correction using cross-sectional consumer data,
assuming arbitrary but identical nonhomothetic preferences across consumers. Our algorithms
approximate the Divisa function using cross-sectional data and then integrates it to construct the
mapping between real consumption and total expenditure. In the base period, total expenditure
by definition coincides with real consumption. This allows us to nonparametrically approximate
the correction as the elasticity of the observed prices index formulas of different consumers with
respect to their total expenditure. Using this elasticity, we obtain the approximations for the
value of real consumption in periods immediately before or after the base period. We can then
recursively apply the same strategy in subsequent periods to approximate real consumption over
the entire period of interest.

We provide two such algorithms, depending on the choice of the price index formula. Using
geometric, Laspeyres, and Paasche indices, we can construct a first-order approximation, whereas
by relying on Térnqvist, Fisher, or Sato-Vartia we can construct second-order approximations.”’
We demonstrate the accuracy our first- and second-order algorithms using a simulation with
known preference parameters, using the nonhomothetic CES (nhCES) preferences of Comin
et al. (2021). We confirm that our procedure accurately recovers the evolution of the exact in-
dex using the observed cross-sectional data, without any knowledge of the underlying preference
parameters.

In the empirical part of the paper, we apply our approach to data from the United States
and quantify the magnitude of the bias in conventional measures of real consumption growth
that ignore nonhomotheticity effects. We build a new linked dataset providing price changes
and expenditure shares at a granular level from 1955 to 2019 across percentiles of the income
distribution. This dataset combines several data sources, primarily drawing from disaggregated
data series available from the Consumer Price Index (CPI) and the Consumer Expenditure Survey
(CEX). This new linked dataset allows us to provide evidence on inflation inequality over a long
time horizon, thus extending prior estimates that have focused on shorter time series. Computing

inflation using group-specific price index formulas, we find that inflation inequality is a long-run

correction inherently depends on the choice of the base period.

Establishing the second-order equivalence of the Sato-Vartia index with superlative indices such as Fisher and
Tornqvist constitutes another important contribution of our paper. The order of approximation is given in terms
of the annual growth in total expenditure and prices across goods, as discussed in Section 2.3.



phenomenon. Using a geometric index formula, we find that cumulative inflation from 1955 to
2019 varies from 700% at the top of the income distribution to 875% at the bottom.

Since richer households experience lower inflation rates in the data, our theory implies that,
at any point other than the base period, consumers are actually better off than that suggested by
conventional, uncorrected measures. Intuitively, when we look into the past from the perspective
of today’s prices, we observe that (i) households were on average poorer sixty-five years ago, i.e.
they had stronger preferences for necessities, and (ii) necessities were cheaper. These empirical
patterns imply higher consumer welfare sixty-five years ago when accounting for nonhomoth-
eticity effects. Symmetrically, looking at today’s economy from the perspective of prices in a
distant period in the past, we observe that (i) households got on average richer and (ii) luxuries
got cheaper, implying higher average welfare today if we account for nonhomotheticity effects.

Empirically, we find that the magnitude of the nonhomotheticity correction can be large. For
example, taking reference prices in 2019, we find that aggregate real consumption (per household)
in 1955 was underestimated by about 11.5% by the uncorrected measure.* The standard, uncor-
rected measure of cumulative real consumption growth is 270% over this period, or 2.07% growth
annually. In contrast, with the nonhomotheticity correction and 2019 reference prices, cumula-
tive consumption growth falls to 232%, or an annualized growth rate of 1.89% per year.” Thus,
in this case the nonhomotheticity correction reduces the annual growth rate from 1955 to 2019
by 18 basis points, which is larger in than the observed difference of 11 basis between Laspeyres
and Paasche indices over the same time horizon. These results show that the magnitude of the
nonhomotheticity correction can be as large as the well-known “expenditure switching bias” (or
“substitution bias”) affecting the Laspeyres and Paasche indices, which demonstrates its quanti-
tative relevance.

Finally, we show in an extension that our strategy generalizes to settings where preferences
systematically vary in consumer characteristics, e.g., age, family size, education, etc. When these
characteristics evolve over time, we need to adjust our measures by characteristic correction fac-
tors that capture the elasticity of the mapping from real consumption to total expenditure with
respect to the changing characteristics. We characterize this mapping and provide algorithms to
approximate the resulting corrections, using the cross-sectional variations in price price index
formulas and consumer characteristics. Empirically, we apply our algorithm to quantify the ad-
justment to aggregate real consumption implied by consumer aging in the United States. We
document a strong positive relationship between conumer age and inflation, which alters the

measurement of real consumption due to the increase in average consumer age over time. We

*We find that the magnitude of the bias is similar across income percentiles.
>The sign and magnitude of the nonhomotheticity correction to the measurement of real consumption growth
inherently depends on the choice of the base period, which we discuss further in Section 3.



find that the implied adjustments to real consumption are economically meaningful but much

smaller than the nonhomotheticity correction, which justifies our focus on the latter.

Prior Work Our paper builds on and contributes to three strands of literature. First, we ex-
tend the literature on index number theory (e.g., Pollak, 1990; Diewert, 1993), which has enabled
transparent and consistent comparisons of the aggregate measures of consumption and produc-
tion over time and space only relying on observables. As emphasized by Samuelson and Swamy
(1974), many classical results do not generalize beyond settings involving homotheticity in pref-
erences. Under nonhomotheticity, Diewert (1976) has showed that one can still rely on the con-
ventional price index formulas to measure changes in welfare locally. However, we show that
these results do not generalize to welfare comparisons over long time horizons. We provide a
detailed discussion of the contrast between our results and these classical results in Section 2.3.5.

Second, we advance a growing literature raising the point that standard price index formulas
suffer from a bias due to nonhomotheticities, whose magnitude relates to the covariance between
income elasticities and price changes (e.g., Fajgelbaum and Khandelwal, 2016; Atkin et al., 2020;
Baqaee and Burstein, 2021). In particular, Baqaee and Burstein (2021) have recently highlighted
the failure of standard measures of real consumption to capture correspond to theoretically con-
sistent welfare measures. They suggest relying on the estimates of the elasticities of substitution
to account for the role of nonhomotheticity.® In contrast, we provide a nonparametric approach
that does not require specifying the underlying demand functions. The importance of the co-
variance between income elasticities and inflation for measuring welfare change is also noted by
Fajgelbaum and Khandelwal (2016) and Atkin et al. (2020). Fajgelbaum and Khandelwal (2016)
measure changes in welfare gains from trade liberalization across different income groups in a
parametric setting and under the assumption of an AIDS demand system (Deaton and Muell-
bauer, 1980). Atkin et al. (2020) consider the problem of welfare measurement in the absence of
reliable price data, and rely on separability assumptions on the structure of preferences to infer
welfare from shifts in the Engel curves. For this procedure to hold without the need for estima-
tion of structural elasticities of substitution, they rule out the types of covariance patterns that
lead to large nonhomotheticity corrections in our framework. In summary, while this litera-
ture provides parametric corrections for the bias, our contribution is to provide a nonparametric
correction that remains valid under arbitrary preferences where all consumer heterogeneity is in
terms of observables.

Third, we contribute to the literature on the measurement of inflation inequality (e.g., Hobijn
and Lagakos, 2005; McGranahan and Paulson, 2006; Kaplan and Schulhofer-Wohl, 2017; Jaravel,

Bagaee and Burstein (2021) additionally study the consequences of the endogeneity of prices in general equilib-
rium, as well as unobserved heterogeneity, e.g. taste shocks. The latter effects have also been recently considered by
Redding and Weinstein (2020).



2019; Argente and Lee, 2021). Prior work on inflation inequality has posited the existence of sep-
arate homothetic indices for different income groups. We apply our methodology to provide esti-
mates of inflation inequality that are robust to potential biases arising from nonhomotheticities.
Using our new linked dataset covering the period 1955-2019 in the United States, we apply our
methodology to the measurement of short, medium, and long run growth in real consumption,
and we quantify the magnitude of the bias stemming from the nonhomotheticity correction.
The remainder of this paper is organized as follows: Section 2 presents our theory, approxi-
mation algorithms, and simulations. Section 3 reports the empirical analysis, and Section 4 gener-
alizes our approach to settings where preferences vary with observable consumer characteristics.

Several proofs and additional results are reported in the appendix.

2 Measuring Welfare Changes under Nonhomotheticity

In this section, we present our theory for the exact measurement and empirical approximation
of real consumption growth under preference nonhomotheticity. Section 2.1 introduces the no-
tation and defines the main concepts used for the measurement of welfare, cost of living, and real
consumption. Section 2.2 presents the theory for measuring real consumption growth assuming
the full knowledge of the demand system. Finally, Section 2.3 derives our approximate results in

terms of observable data.

2.1 Definitions
2.1.1 Real Consumption and the True Price Index

Consider consumer preferences in the space of I products characterized by a utility function
U (q) where g =(g;)!_, is the (nonnegative) vector of quantities consumed of each good. We as-
sume that the corresponding expenditure function E (#;p), characterizing expenditure required
to achieve utility # under vector of prices p = (p;)_, , is second-order continuously differen-
tiable. Moreover, consider a path of prices p, over the time interval ¢t € [0, 7], and let s =w, (y)
denote the vector of expenditure shares across goods as a function of total expenditure y under
these preferences at time ¢, with y = >, p.q; and s, = p.q,/y. The function w, () characterizes
the Marshallian demand for the vector of prices prevailing at time ¢.” Since we do not restrict the
preferences to be homothetic, Marshallian demand depends on total spending y.

We begin by defining our concept of real consumption as a money metric for consistent mea-

surement of welfare over time.

’From Shephard’s lemma, we have w, , (y) = dlog E (#;p,) /3 log p; , subject to y = E (u;p,).



Definition 1 (Real Consumption). For a given vector of prices p;, (with 0 < b < T), define real
consumption under constant time-b (base) prices as a monotonic transformation M (-) of utility »
given by

" =M, () = E (u;p,).- (1)

Equation (1) constitutes our money-metric for welfare for a consumer with utility #, which
gives the minimum expenditure needed to achieve that level of utility under the vector of prices
prevailing at time 4. Since real consumption is defined with reference to base time period &, we
must include 4 in our notation for real consumption, c¢’. For brevity, we will often drop the
superscript to simplify the expressions whenever it is clear that the base b is fixed.

Definition 1 constructs a fixed mapping from utility to real consumption that does not vary
with time. We now define a time-dependent function y/ (-) that maps real consumption ¢ under
base period b to the value of the total expenditure required to achieve that level of real consump-

tion under current prices p,. Formally, this function is given by
x (@) =E (M, (c)ip,), @)

where M '(c) is the level of utility corresponding to real consumption ¢. Note that for a given
consumer with real consumption ¢/ and total expenditure y, at time ¢, we have y, = y/ (cf’ )-
Moreover, by definition we have ¢ = )(bb (c)forall c.

Corresponding to Definition 1, we define the growth in real consumption between periods
t, and ¢ under the base vector of prices at time 4 as the ratio ¢/ / cfo , which is also a (standard-of-
living) quantity index. We also define an index for the inflation in the cost-of-living corresponding

to the level of consumption ¢ between periods ¢, and ¢.

Definition 2 (True Price Index). Define the cost-of-living price index c@tob, , (¢) for a consumer

with real consumption ¢ (defined under base time period &) between periods t, and t (0 < t,,¢ <

T)as

b )(tb (C) 3
=250 ®)

Let us specifically consider the true price index defined between the base period & and the

current period ¢, which satisfies ¢ = y/ (c)/2}, (c). Since y = y!(c), knowing this index al-
lows us to find real consumption by deflating total expenditure. Using Definitions 1 and 2, we
can write the following relationship between real consumption growth and the true price index

between periods ¢, and ¢:

& wP () /9., ”
& 3Pk () Pl () x P} ()
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Equation (4) shows that the growth in real consumption for a consumer under any base period
b is given by deflating the growth in the nominal consumer expenditure by a “composite true
price index”. This composite price index is the product of the true price index between the initial
period t, and the base period b, 3{5; ) <cto>, and the true price index between the base period &
and the final period ¢, P}”Z , (¢,). Crucially, the former index is evaluated at the initial level of real

consumption ¢, while the latter is evaluated at the final level of real consumption c,.’

Homothetic Preferences Let us consider the restriction that the underlying preferences
are homothetic, that is, the composition of demand does not depend on the level of utility.
The utility function U(-) is homothetic if (and only if) we can write the expenditure function
as E (u;p) = P(p) - F(u), for some unit expenditure function P(-) and some canonical homoth-
etic cardinalization F(-) of utility (Diewert, 1993). Correspondingly, from Definition 2, the true
price index ‘@ff, . (¢) between any two time periods t, and ¢ takes the same value independent of
the level of real consumption ¢ and the choice of the base period 4. Equation (4) then simplifies

to’

b
2/
C—tb = %, for any ¢ and for any 4, Q)
Cry 2 Lost (C)
implying that any we can deflate nominal consumption growth by the true index between the

initial and final periods for any level of real consumption.

2.1.2 Price Index Formulas

The indices defined in Section 2.1.1 are “structural”, in the sense that they require the knowledge
of the underlying consumer preferences. In contrast, standard price index formulas can be com-
puted based only in terms of observed expenditures and prices. An index formula is a positive-
valued function IP’<pto, 8,3P;> 3:) of a pair of initial and final vectors of prices and expenditure
shares, which aggregates the changes in a vector of prices and quantities into a single index. The

most common examples include Laspeyres P, , Paasche P}, and geometric P, indices, which only

8In such a pairwise welfare comparison between periods ¢, and ¢, the specific choice of the initial year #, as
base leads to the concept of Equivalent Variation (EV) as our measure of welfare growth, which we can write as

EV =¢/ cf; = (y[ /yto> / gts?t (c?). Alternatively, choosing the final period ¢ as the base leads to the concept of
Compensating Variation (CV), givenas CV =¢/ /¢, = <yt/yto> /2, (cfo)
“Homotheticity is a necessary and sufficient condition for the true price index t@ti[ (¢) to be independent of ¢

and for the growth in real consumption ¢/ / Cf; to be independent of the base 4. Samuelson and Swamy (1974) refer
to this result as the homogeneity theorem.



use one vector of expenditure shares in the initial or final periods:

—1 St
PLzZsi,%<&>, PPE<Z%,[<F”%>> , PGEI_I(pi’t) , (6)

Pi,to pi,t i pi,to

where we have suppressed the argument (pto R st) to avoid repetition. Asis well-known, the
above indices do not account for the substitution effects that change the composition of expendi-
ture between the two periods. Important alternatives that use both initial and final expenditure
shares and account for substitution effects include the Fisher P, Térnqvist P, and Sato-Vartia

P¢ index formulas defined as

I ST S
1 pi,t ' pi,t '
P, =(P, -P,), IP’TEI_[< > , IP’S:I_[< > , 7)

i=1 pi,to i pi,to

where Fisher index is the geometric mean of the Lasypeyres and Paasche, and where the Tornqvist
. _ 1 . . . _
weights are defined as 5, = 5 <si’to + 5i,z> and the Sato-Vartia weights are proportional to 5 ; o<
Si,t/si,to
log(si,t/si,zo)
to approximate the true price index and real consumption growth.

and sum to 1. As we will see in Section 2.3 below, we can rely on these index formulas

2.2 Exact Measurement of Welfare Change under Nonhomotheticity

To show how to measure changes in welfare under nonhomotheticity, we begin with a complete
characterization of the mapping y/ (-) from real consumption to total expenditure, given the
evolution of prices p, and the corresponding expenditure share function w; (-). We use the paths
of prices and the expenditure share function to define a Divisia function D, (-) of total expenditure

at time ¢ as

dlog p;,
logD, (1) = > e () 2P ®)

[

Using this definition, the following proposition provides the characterization.

Proposition 1. Consider a path of prices p, and preferences that lead to the Divisia function D, (-)
over the interval [0, T]. The mapping y ! (-) from real consumption to total expenditure is the solution

to the following differential equation with initial condition )(f (c)=c:

dlog y?!
TO8HL) g, (1 0). )

In addition, for any path of total nominal expenditure y, over the interval, the growth in real con-

10



sumption, defined under period-b constant prices, at any point in time satisfies

dlogct dlog ! (Ctb> - dlogy
L —2t _logD : 10
1 < Zlogc! ><< 7, log t(yt)> (10)

Proof. From Definition (2), we know that everywhere along the path, the total expenditure is

equal to the mapping y? (-) evaluated at the corresponding level of real consumption, i.e. y, =
! <ctb> =E (Mb_l (c) ;p[>. Equation (9) follows from

Jdlog x/ (c) _ alOgE<M;1(C)§pt) dlogp;, ) dlog p;,
dt _Z dlogp., 4t _Zwi,tO(z <C)>T’

where in the second equality we have used Shephard’s lemma. We can now write the full time

derivative of the total expenditure as

dlogy, B dlogE (Mb_l (c);pt) N dlogE (Mb_l (c);pt> dlogcf
dt dt Jdlogc dt ’

—cb —cb
c=c¢; c=¢;

which leads to Equation (10) after rearranging terms, since the first term on the right hand side
equals logD, (y,). Intuitively, this equation shows that the change in nominal expenditure is
the sum of two terms: (i) price changes holding real consumption constant; (ii) the change in
real consumption interacted with the change in the curvature of the expenditure function as real

consumption changes. [

To draw insights from Proposition 1, let us first consider the case of homothetic preferences.
In this case, the composition of demand is independent of expenditure and we have D, (y) = D,

for all y. Hence, Equation (9) implies that along the path we have
logg@;jt (c)=log ¥} (c)—logc = J logD(y_ )dr, Vb,c.
b

The integral on the right hand side defines the standard Divisia price index, which gives the
true price index under the homotheticity assumption. Beyond the homothetic case, as is well-
known, this integral does not necessarily offer a price index that is theoretically consistent (Hul-
ten, 1973).!° Proposition 1 shows that the theory-consistent way to recover the true price index

under nonhomotheticity is to integrate the Divisia function using the differential equation (9),

with log@tit (c)= f; logD_ ()(f (c)) dr.

%For instance, the integral may take different values between the two initial and final periods depending on the
path of expenditure shares considered between the two periods.
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The second insight of Proposition 1 is to show that we can account for the contribution of
nonhomotheticity using a simple multiplicative factor rescaling the standard formula that de-
flates nominal expenditure growth by the Divisia index, % logy, —logD, (y,). Let us define the
nonhomotheticity correction function A? (-) as the elasticity of the true index to real consumption

from the base period to the current period, that is,

l’(c) _ aloggf; (c) _ alog)(tb (c)

= —1 11
Jdlogc dlogc ’ a1

so that the multiplicative factor in Equation (10) is given by (1 + A’ (ct)>71. Under homothetic
preferences, this nonhomotheticity correction is zero A’ (c) = 0 and we recover the standard
result. Otherwise, we have to account for the deviation of the nonhomotheticity correction
function A, from zero in Equation (10). Of course, if prices don’t change over time then we still
find A? (c)=0.

As we move forward in time from the base period ¢t > b, Equation (11) shows that the
nonhomotheticity correction rises if the cost-of-living price index, from the base to the cur-
rent period, is higher at higher levels of real consumption. In such cases, raising one’s real con-
sumption is becoming more expensive over time, and thus the exact measure of real consump-
tion growth is smaller than with the uncorrected deflation of nominal consumption growth,
% logy, —logD, (y,). In contrast, if the true price index is higher at lower levels of real consump-
tion, raising one’s real consumption is becoming less expensive over time, and thus the exact
measure of real consumption growth exceeds what is suggested without correction.’

When does the nonhomotheticity correction require a sizable adjustment to the standard
uncorrected approach? First, by definition the nonhomotheticity correction is small when the
current period ¢ is close to the base period b, so that the true index 9; . () is small. Second, the
dependence of the index on real consumption stems from systematic differences in price changes
across goods as a function of their income elasticities. Indeed, we can re-write the nonhomoth-

eticity correction as

M= S e 0) o0 S a,

_ dlogar; (22(0)

where n? (c)= denotes the elasticity of expenditure shares with respect to real con-
it Jdlogc

dlogpi'r
d

T

sumption. Thus, the nonhomotheticity correction is zero if price inflation is uncorrelated
with income elasticities 7°_(c) across goods i, even if the average size of price inflation is large.

We conclude that the nonhomotheticity correction is likely to be sizable when preferences are

We provide intuition for this result with examples at the end of this section.
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nonhomothetic, price inflation is large and correlated with income elasticities across goods, and
real consumption is expressed in terms of a base period that is distant from the current period.
We note that the role of the covariance between income elasticities and price changes has been
highlighted in prior work (e.g., Fajgelbaum and Khandelwal, 2016; Atkin et al., 2020; Baqaee and
Burstein, 2021). As we will see in Section 2.3 below, this paper is the first to provide a nonpara-
metric approximation for the nonhomotheticity correction that is valid under arbitrary prefer-
ences (as well as heterogeneity in terms of observables). Before doing so, we highlight another

important property of the nonhomotheticity correction.

Real Consumption Growth and the Choice of Constant Prices How does the choice of the
base period affect the measurement of growth in real consumption? The following lemma shows
that there is a systematic relationship between the choice of the base period and the corresponding

measure of real consumption.

Lemma 1. Consider two base periods b, < b,. At time t, the rate of growth in real consumption
measured with constant prices in period b,, relative to real consumption with constant prices in period
b, satisfies

b
low 22 dlog®” (c)
= ()= w
dlogc," : dlogc ok
Proof. See Appendix A.2. O

Lemma 1 shows that the sign of the bias induced by the nonhomotheticity correction inher-
ently depends on the choice of the base period.'” More specifically, it shows that the gap between
measures of growth at time ¢ using two different base periods, 5, and b,, depend on the nonho-
motheticity correction between the two periods b, and b,. For instance, assume b, < b,, prices
are on the rise, and price inflation negatively covaries with income elasticities across goods be-
tween periods b, and b,. In this case AZ < 0, and by Equation (12) real consumption growth is
lower when measured from the perspective of the later period b,.

To gain intuition about the economics behind this result, let us consider a simple economy
with two goods: burgers and mobile phones. Assume that mobile phones are more income
elastic than burgers and that over a period of time, for example from 1970 to 2020, the relative
price of mobile phones falls substantially relative to burgers. From the perspective of prices held
constant at their 1970 level, real consumption growth over this fifty-year period is larger when
preference nonhomotheticity is taken into account. The reason is that consumers become richer

over time, which leads to an increase in the propensity to spend on mobile phones, precisely

2To the best of our knowledge, this point has not been made in prior work on measuring welfare change in the
presence of preference nonhomotheticity.
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when the relative price of mobile phones is falling. Thus, in this example conventional measures
of real consumption growth are biased downward because they do not account for the fact that
the income-elastic goods become relatively cheaper at the same time as they become relatively
more important from the point of view of consumer preferences.

In contrast, looking backward in time from the perspective of prices held fixed at a later
period, for example 2020, real consumption growth during the period is smaller when account-
ing for the nonhomotheticity correction. Indeed, going backward in time, consumers become
poorer and spend relatively more on the income-inelastic good, burgers, which become relatively
cheaper. Thus, the fall in income is dampened by the fact that burgers are relatively cheaper while
consumer demand for burgers has increased. Therefore, consumers in the past were richer than
typically thought, i.e. conventional measures of real consumption growth are biased upward.

These examples illustrate how the curvature of the mapping between welfare and our money-
metric depends inherently on the choice of the base period. Regardless of the choice of the base
period, in the examples above the level of real consumption is always underestimated by the

standard measures, all the more so as we move away from the base period.

2.3 Approximating Welfare Changes under Nonhomotheticity

Proposition 1 establishes that to infer a theoretically consistent measure of real consumption, we
need to know how the true price index depends on total consumer expenditure (or income, or
real consumption). In this section, we rely on this insight and build on classical index number
theory to construct approximations for the nonhomotheticity correction and real consumption
growth in terms of observed prices, expenditures, and expenditure shares. Our algorithm relies
on cross-sectional data for consumers with heterogeneous incomes whose choices are assumed to

be characterized by identical nonhomothetic preferences.

2.3.1 Setting for the Approximation

As in Section 2.1.1, we consider continuous paths for prices and expenditures in some fixed time
interval, but now additionally assume that the data only provides us with 7"+ 1 discrete obser-
vations along this path. Without loss of generality, we denote the end period by the integer T
and let ¢ € {0,1,---, T} denote the time index of each observation. Since the paths of prices
and expenditure are fixed, we assume that the following bounds on price inflation and nominal

expenditure growth increasingly vanish as we increase the number of observations 7"+ 1:

A, Emax{ log<w> }, A =max log<)£> . (13)
L pi,t t yi,t
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We use the bounds above to introduce the concepts needed for constructing our approxima-
tion error bounds. Consider two sequences {f,}/_, and {g,}/_, defined as functions of the ob-
served sequences of price and expenditures along the path. As the number of observations 7'+ 1
and the bounds in Equation (13) change, the values of the two sequences also change. Let us
denote the corresponding mapping between the size of the bound A, where A = max{A ,,A },
and the values of the two sequence as f, = f, (A) and g, = g, (A).”” Now, we define the sequence
f, as an m-th order approximation of the sequence g,, and denote this by f, — g, = O(A™), if
the differences between the values of the two sequences fall in magnitude with A” as T grows.
Formally, this relation holds if lim,_,(f, (A)— g, (A)) A~ = b for some finite constant b > 0.

For the key results presented in Section 2.3.3 below, we make the additional assumption that
in each period we observe the composition of consumption expenditures for N consumers or
households with identical preferences characterized by a continuously differentiable expenditure
function, E (u;p). They face the same sequence of prices and have heterogeneous levels of total
expenditures, satisfying the bounds in Equation (13). Finally, we assume that the underlying
distribution of real consumption across consumers has a probability distribution function that

is bounded away from zero over an interval [¢,c] for all # > 0.

2.3.2 Index Formulas as Approximations for the True Index

We begin with a lemma that shows the sequences of geometric and Térnqvist price indices be-
tween successive time points approximate the corresponding sequence of true price indices up to

first and second orders, respectively.'*

Lemma 2. Assume that the underlying expenditure function E (-;-) characterizing choices (p,,s,,y,)
and (P, 1,8,41>Y,11) is third-order continnously differentiable in all its arguments. Then, if the cor-
responding changes in prices and total expenditures satisfy Equation (13), the geometric and Tornquvist

price index formulas satisfy

logZ tt+1 (c)=logPg (pt’st;pt+1’st+1>+o<A2)’ che{c[b’(:tbﬂ}’, (14)

= logP; (pt’st;pt+1’st+l>+o<A3>’ ifc= V€ zb+1’ (15)

where A = max {A p,Ay} and where ¢! = ( X, ) 1(%) denotes the level of real consumption corre-
sponding to choice (p,,s,,Y,).

B Note that this definition involves a slight abuse of notation, since the sequence is a function of all observations
of prices, expenditures, and expenditure shares.

4 As we discuss in Section 2.3.5, we can generalize this result for broader classes of index formulas defined in
Section 2.1.2. Lemma 2 closely parallels the results of Diewert (1976), who shows that the Térnqvist price index is
exact for the translog family of expenditure functions.
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Proof. See Appendix A.2. O

Recall that under homotheticity, the true price index does not depend on the level of real
consumption c. As the proof of the lemma shows, under homotheticity the lemma holds for any
level of real consumption ¢ and with a tighter bound A=A . In this case, the sequences of geo-
metric and Tornqvist indices provide us with approximations of the Divisia index, which we can
chain over time to integrate the Divisia index and approximate any true price index log Qtf, . (c).
Thus, in the case of homothetic preferences, the error in the chained indices over the entire fixed
interval, depending on whether the geometric or Térnqvist formula is used, is first or second
order."”

In the presence of nonhomotheticity the lemma shows that approximations remain valid only

b
t+1°

geometric and Tornqvist indices does 7ot lead to a theoretically-consistent measure of the true

for local levels of real consumption, in the sense that they are close to ¢” and ¢”,,. Thus, chaining
price index over the entire interval. As we will see next, however, we can still rely on the insights

of Proposition 1 to approximate the true price index.

2.3.3 Approximating the Nonhomotheticity Correction Function: First-Order Approach

We now establish the central result of this paper, the algorithm allowing for consistent measure-

ment of real consumption over time thanks to a nonhomotheticity correction.

Intuition We first describe the intuition underlying our approach, which proceeds in two steps.
In the first step, we use Lemma 2 to approximate the true price index across successive time
periods for different consumers with different levels of expenditures y. This step allows us to
approximate the Divisia index as a function of total expenditure, D, (y). In the second step, we
use Proposition 1 to recover real consumption in all periods. We start from the initial condition
x7 (c) = c and use the observed, period-specific Divisia index as a function of total expenditure,
D, (y), to numerically integrate the differential equation (9). Doing so from the base period &
across successive periods, we obtain an approximation for the mapping y/ (¢) and the true price
index ;@Z , (). We can implement this algorithm going forward or backward in time, depending

on the choice of the base period.

Algorithm We begin with a first-order algorithm that relies on geometric index formulas to

construct an approximation of the nonhomotheticity index and real consumption growth. Let

The lemma implies the error bounds O (T -A?)and O (T - A%) for the chained geometric and Térnqvist formu-
las, respectively. Note that since we keep the interval and the overall true index fixed, we have 77! = O (A).

16



77 denote the geometric index formula for consumer 7 from period ¢ to period ¢ + 1:

7} Z10gPg (P, 873D, 415141 ) (16)

where s7 is the vector of consumption expenditures for consumer 7 at time ¢. Starting in the
base period t = b, we have . (c) = ¢ and thus the real consumption for each consumer is equal
to their observed total expenditure ¢} = ¢ =y}, where we omit the superscript b indicating the
base year to simplify notation, and where we indicate our estimated value of real consumption at
time ¢ by ¢'. From Lemma 2, we know that 2, ., (c}') & ). Thus, we can use a nonparametric
model to fit a smooth function to the observed household-level relationship between the true
price index and real consumption, leading to an estimated function @Tb, p41(+)- This allows us to
compute an approximation for the nonhomotheticity correction A p41 () as the elasticity of the
estimated function é—;b p+1 (+) with respect to consumption, following Equation (11). Using this
correction in Equation (10), we find an approximation for the values of real consumption across

consumers in the next period from (for t = b):

1 Vi
oatt =g+ a2 w
T+ A, () '

The following algorithm successively applies this procedure to construct the sequence of values
of real consumption for consumers in all periods going forward in time. The application of the

algorithm backward, from period & for periods ¢ < b, follows analogous steps.

. . . . . — kK
Algorithm 1 (First-Order Algorithm). Consider a sequence of power functions {f,(z) = z*} ' for
some Ky, where N is the number of consumers in the cross-section.'® Let ¢} =y} and for each t > b,

successively apply the following two steps.

1. Nonparametrically fit the true price index between periods t and t + 1:

Estimate the coefficients <5?k’t)fi o Solving the following problem.:
N Ky 2
miII} Z<7T;Z_Zak,tf/e (log?;“)> , (18)
(a/e,t)kzo n=1 k=0
where {1} are household-specific price index formulas at time t defined by Equation (16).

2. Estimate the values of real consumption for consumers in period t + 1:

*One can apply alternative series-function approximations, using alternative basis functions such as Fourier,
Spline, or Wavelets. The results here generalize to such alternative nonparametric methods subject to modified regu-
larity assumptions on the expenditure function and the distribution of real consumption across consumers (Newey,
1997).
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Use Equation (17), where the approximate nonhomotheticity correction function is given by

Ky

R0 z(zak T>f,e (log ). (19

k=0 \7=b

Step 1 in Algorithm 1 constructs an approximation for the true price index ?;’:’t +1()- The

integration of the true price index between the base period & to current period ¢ implies that

t Ky
102, 11 () =D log 2., ()= <Z a, T>f ¢ (logc), (20)
T=b k=0

which then allows us to compute an approximation for the nonhomotheticity correction from
Equation (19). Proposition A.1 in Appendix provides bounds for the approximation error of this
algorithm.

In practice, the algorithm is easy to implement and consists of two steps: (i) running a se-
quence of period-by-period OLS regressions, as in Equation (18); (ii) summing up period-specific
OLS coefficients from the base to the current period, as in Equation (20). We thus obtain the

nonhomotheticity correction at each point in time.

2.3.4 Extensions

In this section, we discuss three important extensions of the baseline first-order Algorithm 1.

Second-Order Algorithm Lemma 2 shows that the Tornqvist index formula yields an approx-
imation with a tighter error bound for real consumption under a local base period. We can use
this result to construct a second order approximation for real consumption growth. Algorithm
A.1in Appendix A.1.1 uses an iterative structure to achieve this second order approximation.
Unlike the case of Algorithm 1, which evaluates the nonhomotheticity correction only at cur-
rent period’s level of real consumption At +1(¢,), our second-order algorithm further evaluates
the nonhomotheticity correction function at next period’s level of real consumption A, ()
to approximate the real consumption growth ¢, ,/c,. As a result, the algorithm additionally in-
volves solving for a fixed-point problem in each period to update the value of real consumption
in successive periods. Proposition A.2 in Appendix A.1.1 establishes the tighter error bounds

achieved by this second-order algorithm.

Alternative Price Index Formulas We can generalize the results of Lemma 2 and Propositions
A.1and A.2, and thus the first- and second-order algorithms 1 and A.1, to index formulas beyond

geometric and Tornqvist. The following Proposition states this result formally.
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Proposition 2. If the expenditure function E (-;-) is second-order continuously differentiable in all
its arguments, then the price index formulas defined in Section 2.1.2 satisfy

loglP (pt’st;pt+l’ sz+1> =loglP, (pz’ S$i3Piyrs sz+1> +0 <A2> ; I €{P,L,T,F,S},
10gP; (D, 8,50, 41,8,41) =108 P (P,,8,5P,4158,,1) +O(A%),  Te€{F,S},

where A = max {Ay, AP} with A and A, defined as in Equation (13).
Proof. See Appendix A.2. O

One implication of Proposition 2 is the classification of price index formulas into two groups:
the first group (composed of geometric, Laspeyres, and Paasche index formulas) provides a first-
order approximation to the true price index, while the second group (composed of Tornqvist,
Fisher, and Sato-Vartia) provides a second-order approximation. To reflect the accuracy of the
approximations for each group, we refer to the first group of index formulas as first-order index
formulas and to the second group as second-order index formulas.

It follows that the results of Lemma 2 and Propositions A.1 and A.2 for first and second order
approximations extend to any formulas in the first and second order family of indices, respec-
tively. For instance, the Sato-Vartia or the Fisher index between periods ¢ and ¢ + 1 approximates
the true price index between these two points for the corresponding level of real consumption
specified in Lemma 2. Moreover, we can replace the Tornqvist index with the Sato-Vartia or
Fisher index in our second-order Algorithm A.1, and the same error bounds characterized in
Proposition A.2 apply.

We rely on these extended results in our empirical exercise in Section 3 where, due to data

limitations, the most natural choice for a second-order index is the Fisher index.

Observable Heterogeneity in Consumer Characteristics Our method requires that we can
infer the relationship between the true price index and total expenditure from the cross-household
relationship between price index formulas and total expenditures (e.g., Step 1 of Algorithm 1).
However, the observed relationship between household-level price indices and household expen-
ditures may in principle be confounded by other factors, for example household age or education.
To alleviate this potential concern, we can (nonparametrically) control for observable covariates
in this step of the algorithm. However, to build a theoretically consistent account of the potential
dependence of consumer preferences on characteristics beyond income, we need to generalize our
concept of real consumption. As we will discuss in Section 4 below, such a generalization leads to
further corrections in our standard measures of real consumption, beyond the nonhomotheticity

correction, in order to account for the impact of potential changes in consumer characteristics
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on consumer welfare over time. As discussed in Section 4, we empirically find that the results

from our baseline algorithm are robust to this extension.

2.3.5 Discussion

As discussed above, Lemma 2 and Proposition 2 together classify common price index formulas
into two first- and second-order groups, based on the accuracy of the approximations they provide
for true price indices under arbitrary underlying preferences. Our approach thus differs from the
standard treatment of index formulas, which classifies index formulas based on the underlying
family of preferences for which they provide exact measures of true price indices (Diewert, 1993).
For instance, the Tornqvist price index is exact for the family of preferences that lead to a translog
unit cost function.” Unlike our approach, the concept of exact price indices requires specifying
the underlying form of the preference functions.

One crucial step is to define, as in Diewert (1976), the Fisher and Tornqvist price indices as
superlative price indices, on the grounds that they are exact for families of preferences that can
provide a second-order approximation to other homothetic preferences, namely the quadratic
and the translog family, respectively. In line with this insight, Diewert (1978) has shown that
alternative choices of superlative indices, when chained, lead to very similar estimates for the
changes in cost-of-living and real consumption in practice. Lemma 2 and Proposition 2 formalize
these classical insights and generalize them ro include the Sato-Vartia index. Instead of establishing
the exactness of different index formulas for distinct families of preferences that may approximate
general preferences, the lemma provides bounds on the approximation error of the reduced-form
indices for arbitrary preferences.'®

As mentioned, these classical results do not allow us to provide precise approximations of real
consumption growth over long time horizons beyond the case of homothetic preferences.”” By
solving this problem, Algorithm A.1 and Proposition A.2 in Appendix A.1.1 offer a substantial

generalization of index number theory to nonhomothetic preferences.

17 As for other examples, the Laspeyres and Paasche indices are exact for Leontief utility functions, and the geo-
metric and Sato-Vartia index formulas are exact for Cobb-Douglas and CES utility functions. The Fisher price index
is exact for the family of preferences that lead to quadratic unit cost functions.

8In line with Equation (15), Diewert (1976) shows that the Térnqvist index is exact for the family of nonho-
mothetic preferences characterized by a translog expenditure function, for the true index under the level of real
consumption specified in Lemma 2.

Samuelson and Swamy (1974) discuss several examples of such results and provide examples that show how they
fail under nonhomotheticity.
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2.4 Simulation

In this section, we perform a simple simulation to illustrate and validate the accuracy of our
algorithms in accounting for the effect of nonhomotheticity when measuring real consumption
growth.

Comin et al. (2021) have shown that the nonhomothetic CES (nhCES) preferences lead to a
demand system compatible with the cross-sectional relationship between household income and
the composition of expenditure among three main sectors of the economy: agriculture, manu-
facturing, and services. Following their specification, we assume that the expenditure function

satisfies:

E(u;p,)= Z ¢i<”8ipi,t>l_0 . (21)

i€{a,m,s}

We use the same parameters as in Comin et al. (2021): (o,¢_,¢,,,¢,) =(0.26,0.2,1,1.65), implying
that services are luxuries (income elasticities exceeding unity) and agricultural goods are necessi-
ties (income elasticities lower than unity). We consider a population of a thousand households
with an initial distribution of expenditure with a log-normal distribution, specifying a mean cor-
responding to the average US per-capita nominal consumption expenditure of $3,138 in 1953 and
a standard deviation of log expenditure of 0.5 (Battistin et al., 2009). We consider a horizon of
70 years and assume that over this horizon nominal expenditure grows at the constant rate of
4.48% per year, in line with the US data from the period 1953-2019. In each of the cases discussed
below, we choose the fixed sectoral demand shifters ¢, in Equation (21) in such a way that in
the first period the composition of aggregate expenditure fits the US average shares of sectoral
consumption in the three sectors in 1953.%°

To examine the role of the covariance between price inflation and income elasticities, we
consider a simple, purely illustrative simulation. We set the inflation rate in the manufacturing
sector to be the average inflation rate in the US over the period 1953-2019 of 3.19%. We then
consider two illustrative cases featuring either positive or negative covariances between inflation
and income elasticities. To study the case with a positive covariance, the inflation rate is set to
be 1pp higher in service and 1pp lower in agriculture compared to manufacturing, leading to the
inflation rates of 4.19% in services and of 2.19% in agriculture. To illustrate the case of a negative
covariance, we reverse these parameters, setting inflation rates to 2.19% in services and 4.19% in
agriculture.

Given the known structure of underlying preferences, this example allows us to compute the

true values of real consumption for each household and assess the accuracy of our algorithms.

2The corresponding shares in the US based on the BLS data are 0.14, 0.27, and 0.59 for agriculture, manufacturing,
and services, respectively.
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Figure 1: Illustrative Simulation of the Evolution of Average Real Consumption

(a) Positive Ccovariance/initial base (b = 0) (b) Positive covariance/final base (b = 70)
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Note: The figures compare the evolution of the true value of average real consumption with two different approaches to approximating this
value: 1) the average of the uncorrected nominal real consumption growth deflated by household-specific geometric price indices, and 2)
applying the nonhomotheticity correction using the first-order algorithm. The panels show the resulting series for the choices of base period
(2) b =0and (b) b =70 with a positive income elasticity-inflation covariance and (c) » = 0 and (d) & = 70 with a negative covariance.

Relying only on the simulated data, we also apply the standard, uncorrected deflation of nominal
consumption expenditure for each household to assess the magnitude of the bias in uncorrected
measures.

Figures 1a-1d report the results. We compare the evolution of the average measures of real
consumption across the simulated population over time with the two different approximations.
First, we see that the conventional approach based on chaining uncorrected measures of nominal
expenditure growth deflated by the Tornqvist index leads to sizable bias depending on the choice
of the base period and/or the covariance between price inflation and income elasticities. While

errors accumulate in the uncorrected chained values, applying our first-order nonhomotheticity
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correction yields results that are virtually indistinguishable from the true evolution of real con-
sumption found based on the underlying preferences. Thus, our approach accurately recovers
the evolution of the true index without the knowledge of the parameters of the demand system.

In Appendix B, we provide an illustration of the evolution of the expenditure function in our
simulation over time, and compare it against a homothetic benchmark. This analysis demon-
strates how changes in the curvature of the expenditure function translate into biases in the uncor-
rected measures of real consumption growth. The appendix further provides a detailed analysis
of the size of the approximation error under our first and second order approaches, and extends
the simulation to a wider range of values for the covariance between price inflation and income

elasticities.

3 Empirics

In this section, we apply our approach to data from the US and quantify the magnitude of the

bias in conventional measures of real consumption growth.

3.1 Data and Descriptive Statistics

Data To assess the empirical importance of the nonhomotheticity correction, we build a dataset
providing total expenditures and expenditure shares at a granular level, across 598 items from
the Consumer Expenditure Survey (CEX). These items, called Universal Classification Codes
(UCC), are defined by the BLS and cover the entire consumption basket of households in the
United States. We obtain price changes for each item using CPI price series combined with the
official concordance provided by BLS for active UCCs, which weextend manually in prior years
for UCCs that were discontinued. Appendix C provides a complete description of the data con-
struction steps.

Using the CEX micro-data, we obtain expenditure patterns and socio-demographic charac-
teristics at the household level. We then aggregate the household-level data to the level of pre-tax
income percentiles. We thus obtain expenditure patterns that vary across income percentiles,
which we will use to compute the income elasticity of inflation. We also use this dataset to mea-
sure consumption growth rates across income percentiles. To ensure that the patterns of con-
sumption are consistent with national accounts at the aggregate level, we reweigh the data series
so that aggregates in our data match the official aggregate personal consumption expenditures

provided by the Bureau of Economic Analysis (BEA).?' Our analysis is thus fully consistent with

2See Appendix C for a detailed description of this step. As described in Appendix C, we also ensure that our
dataset perfectly matches the official CEX summary tables published by the BLS by product categories and income
quintiles.
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macroeconomic aggregates and extends the logic of the distributional national accounts (Piketty
et al. (2018)) to a setting allowing for the computation of inflation inequality.

Prior to 1984, the data require special treatment since CEX household-level data and CEX
expenditure summary tables by product category and socio-demographic groups are no longer
available, except in two years, 1972 and 1960. We use these two data points to interpolate the
data for missing years. Prior to 1960, we use our first-order approximation to the correction for
nonhomotheticities to extrapolate expenditure shares back to 1955, and we obtain the aggregate
growth rate of consumption expenditures from the BEA.?? Given the data limitations prior to
1984, we present two sets of results, first focusing on the period from 1984 to 2019 for which
high-quality CEX data is available annually, and then a longer historical analysis going back to
1955.

Descriptive inflation statistics This new linked dataset allows us to provide evidence on in-
flation inequality over a long time horizon, thus extending prior estimates that have focused on
much shorter time series. Computing inflation using group-specific price indices, we find that
inflation inequality is a long-run phenomenon. Panels (a) and (b) of Figure 2 report aggregate
and heterogeneous inflation patterns between 1984 and 2019, using chained geometric price in-
dices. While panel (a) shows that the cumulative inflation rate with aggregate expenditure shares
is about 120%, panel (b) reports that inflation was higher for lower-income groups, ranging from
140% at the bottom to 110% at the top. Thus, over the course of these 35 years, a gap of around 30
percentage points has opened up in the chained geometric indices between the lowest and highest
income groups. This finding is consistent with the growing literature on “inflation inequality,”
the fact that inflation rates are higher for lower-income households (e.g., Kaplan and Schulhofer-
Wohl, 2017; Jaravel, 2019; Argente and Lee, 2021). While this literature focused on post-2000
patterns, our data shows that this trend persists over several decades.

Furthermore, Panels (c) and (d) extend the analysis back to 1955, showing that inflation in-
equality also existed over this longer time horizon. We find that on average over the 1955-2019
period, the annual inflation rate was about 35 basis points lower for the top relative to the bot-
tom of the income distribution. This sustained inflation difference leads to a gap of about 175
percentage points in cumulative inflation over the period, which varies from 700% at the top to
875% at the bottom of the income distribution. To the best of our knowledge, this paper is the
first to build a dataset with disaggregated consumption patterns providing evidence on inflation
inequality for a period of nearly 65 years.

Online Appendix Figure D.1 reports additional descriptive patterns on the dynamics and

22See Appendix C for a detailed description of this step.
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magnitude of inflation inequality over time.” Inflation inequality was strongest after 1995, weak
between 1984 and 1995, and significant between 1955 and 1984.*

Figure 2: Descriptive Inflation Statistics

(a) Inflation with aggregate expenditures, 1984-2019

(b) Inflation by income percentiles, 1984-2019
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(c) Inflation with aggregate expenditures, 1955-2019
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(d) Inflation by income percentiles, 1955-2019
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Note: This figure describes inflation patterns in our data. Panel (a) reports inflation from 1984 to 2019 using aggregate expenditure shares. Panel
(b) shows heterogeneity in cumulative inflation rates between 1984 and 2019 by pre-tax income percentiles. In this panel, price indices are built
using expenditure shares that are specific to each pre-tax income percentile. Panels (c) and (d) repeat the analysis for a longer period, from 1955
to 2019. All panels use chained geometric price indices.

3.2 Main Estimates

Analysis from 1984 to 2019 We first implement Algorithm 1 using our main dataset and the
geometric price index formulas, leveraging the observed expenditure patterns and prices for each
income percentile from 1984 to 2019. As we saw in Section 2, the negative covariance between
household income and price indices shown in Figure 2 implies that the uncorrected measures

of real consumption should underestimate the values of real consumption under any fixed base

BNote that, although the cumulative level of inflation inequality shown in Figure 2 is economically meaningful,
it is smaller than the deviations we considered in the illustrative example of Section 2.4.

2Explaining these patterns of inflation inequality falls beyond the scope of this paper, but we note that they
are consistent with several mecanisms that were proposed in recent work. For example, demand-driven theories of
directed innovation can lead to inflation inequality in period of sustained economic growth like the postwar period,
with a stronger effect when inequality is rising, like in the 1990s and 2000s (see Jaravel (2019)).
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period. Indeed, this is what we find in panel (a) of Figure 3, which reports the bias in the average
level of aggregate real consumption absent the nonhomotheticity correction under the initial and
the final periods the basis for welfare comparisons.”

Using 1984 prices as base, we find that the level of aggregate real consumption (per household)
is underestimated by about 1.5% in 2019. Mechanically, the bias in the level of real consumption
is very small in the first few years after 1984. It grows gradually as the negative covariance be-
tween inflation and household income leads to a gradual changes the curvature of the expenditure
function relative to the base year. Likewise, the panel shows that, using 2019 prices as base, the
level of real consumption in 1984 is underestimated by about 3.2%. Thus, due to the nonhomo-
theticity correction, at any point other than the base period we find that consumers are actually
better off than what is implied by standard uncorrected measures. Intuitively, when we look into
the past from the perspective of today’s prices, we observe that (i) households were poorer thirty
years ago and (ii) necessities were cheaper, which implies that consumer welfare thirty years ago
was higher than according to standard measures ignorning changes in the relative price of neces-
sities and luxuries. Symmetrically, looking at today’s economy from the perspective of prices
in a distant period in the past, we observe that (i) households got richer and (it) luxuries got
cheaper, therefore welfare is higher than with the conventional measure that does not account

for nonhomotheticity.

Figure 3: Nonhomotheticity Correction and Bias in Aggregate Real Consumption, 1984-2019

(a) Bias in the Level of Real Cons. (b) Annual Bias in Real Cons. Growth
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Note: This figure report the biases in the level of aggregate real consumption per household, in panel (a), and in annual growth in real consumption
per household, in panel (b). The bias is computed by applying Algorithm 1 to obtain the nonhomotheticity correction. We then compare standard
measures of real consumption to corrected measures. In panel (b), the bias is expressed as a percentage of the standard homothetic measure of
current-period growth. Algorithm 1 is applied to our main dataset at the level of pre-tax income percentiles, using geometric price indices. We
then aggregate percentile-level results to obtain aggregage real consumption per household.

As shown in panel (a) of Figure 3, the nonhomotheticity bias affecting the level of real con-

3 Algorithm 1 is implemented using each pre-tax income percentile cell as one observation in the cross-section,
and we then aggregate the results.
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sumption has the same sign regardless of the base year for prices. In contrast, the nonhomoth-
eticity bias in the growth of real consumption does depend on the choice of base year. To see
why, note that with 1984 prices as base, real consumption growth is underestimated, since real
consumption in the future is underestimated by the standard measure without nonhomotheticity
correction. Symmetrically, with 2019 prices as base, growth is overestimated since the level of
real consumption is underestimated in all past periods. Panel (b) of Figure 3 reports these results,
expressing the size of the bias as a share of measured growth.?® The biases are mechanically small
close to the base year, but become larger for more distant years. With 1984 prices as base, the
standard measure underestimates real consumption growth by about 7.5% in 2019. Taking 2019
prices as base, the standard measure overestimates real consumption growth by approximately
7.5% in 1984.

It is also instructive to examine the disagreggated patterns for the nonhomotheticity correc-
tion across pre-tax income percentiles. Figure 4 plots these results. Panel A reports the bias in
annual growth in real consumption for each income percentile. Panel A(i) focuses on growth in
2019, with 1984 prices as base.”” We find that the correction is larger for low-income groups: the
annual growth in real consumption in 2019 is underestimated by 10% at the bottom of the in-
come distribution, and only by 4% at the top. Symmetrically, panel A(ii) shows that, with 2019
prices as base, annual growth in 1984 is overestimated by about 9% at the bottom of the income
distribution compared with 6% at the top.

Panel B of Figure 4 consider the biases for the levels of real consumption. The two panels
show that the nonhomotheticity correction in levels is very similar across all income percentiles,
with some noise inherent in survey data on expenditures. The effects in levels take into account
the combination of annual corrections and percentile-specific growth rates, as accumulated over
the full period.

Thus, the first key takeaway from our analysis is that the nonhomotheticity correction can be
sizable and, given the observed patterns of inflation inequality, it generally implies that welfare
over time is higher than commonly thought. The extent of the resulting bias in the level of real
consumption is similar across income percentiles. Online Appendix Figure D.2 confirms this
finding by reporting the chained index formula, I, 77, compared with the corrected nonhomo-
thetic deflator, v/ /c}’: the correction is similar in magnitude for all pre-tax income percentiles.

To assess the quantitative relevance of the nonhomotheticity correction, it is instructive to com-

*For each income percentile 7, the annual bias in real consumption is defined as the difference between the
uncorrected measure, Alogy” — 77, and the corrected measure, Alogc””. Using Proposition 1, we thus define the

. _ Alogy*—n"—Alogc?” Al(c)
n — 3 t JR— t
biasas A7 = A Togar—r Mot

-. We compute the bias for each percentile and then aggregate over all income

percentiles.
?"The biases are expressed as a share of measured growth, as given by A” defined in footnote (26) for each percentile
n in 2019.
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pare its size to other sources of bias. In Online Appendix Figure D.3, we find that the size of
the nonhomotheticity correction is of the same order of magnitude as the divergence between
percentile-specific homothetic indices and the aggregate homothetic index, which highlights the

quantitative relevance of the nonhomotheticity correction.

Figure 4: Nonhomotheticity Correction and Biases in Real Consumption by Income Percentiles

Panel A: Percentile-specific biases for annual growth in real consumption
(1) In 2019 with 1984 prices as base (i1) In 1984 with 2019 prices as base
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Panel B: Percentile-specific biases for the level of real consumption
(1) In 2019 with 1984 prices as base (i1) In 1984 with 2019 prices as base
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Note: This figure reports the biases in measures of real consumption due to the nonhomotheticity correction. The results for the annual growth

in real consumption are depicted using 1984 prices as base in panel A (i) and 2019 prices as base in panel A(i1). Panel B reports the result for the
bias in the level of real consumption. All panels use geometric price index formulas.

Analysis from 1955 to 2019  Next, we extend the analysis back to 1955, reporting the results
in Figure 5.7 Panel (a) reports the bias in levels; the patterns are identical to Figure 3 after 1984.
With 1984 prices as base, we find that the level of real consumption is underestimated by about
2% in both 1955 and 2019 due to the nonhomotheticity correction. As a result, the conventional

measure of cumulative real consumption growth between 1955 and 2019 is not meaningfully

2 As explained in Appendix C, due to data limitations (i) we assume the expenditure shares observed in 1960
remain constant for the period 1955-1960, (ii) we interpolate expenditure shares between years 1960 and 1972, and
between 1972 and 1984.
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affected by the nonhomotheticity correction, simply because the two biases in levels in 2019 and
1955 turn out to be of the same magnitude.

With 2019 prices as base, the nonhomotheticity correction becomes particularly large as we
go back in time, because inflation inequality exists throughout the entire period and the nonho-
motheticity correction accumulates over time. In 1955, aggregate real consumption (per house-
hold) is underestimated by about 11.4% by the uncorrected measure. This finding shows that
the nonhomotheticity correction can become large over long time horizons, depending on the
choice of base prices.

Furthermore, Panel (b) of Figure 5 documents the bias in annual growth due to the nonho-
motheticity correction. With 1984 prices as base, the bias before and after 1984 changes sign.
Specifically, it ranges from a positive bias of 5% in 1955 to a negative bias of -7% in 2019. In
contrast, with 2019 prices as base the bias in annual consumption growth is always positive and
becomes large as we go back in time, approaching 15% in 1955.

To better appreciate the magnitude of the nonhomotheticity correction, panel (c) of Figure 5
reports cumulative consumption growth per household between 1955 and 2019; panel (d) reports
the same patterns by annualizing consumption growth. The standard, uncorrected measure of
cumulative consumption growth is 270% over this period, or 2.07% growth annually. With 1984
prices as base, the nonhomotheticity correction leaves these patterns almost unchanged, implying
a cumulative consumption growth of 267%. However, with 2019 prices as base, the difference
becomes large: cumulative consumption growth falls to 232%, or an annualized growth rate of
1.89% per year. Intuitively, from today’s perspective, consumer welfare in the past was higher
than conventionally thought, because income was lower in the past and necessities were relatively
cheaper. Hence, real consumption growth was smaller than conventionally thought.

With 2019 prices as base, the nonhomotheticity correction reduces the annual growth rate by
18 basis points, which is larger in than the observed difference of 11 basis between Laspeyres and
Paasche indices over the same time horizon. Online Appendix Figure D.4 reports the patterns
for the Laspeyres and Paasche indices. Cumulative real consumption growth was 277% with
the Paasche index, compared with 254% with Laspeyres, or a gap of 23 percentage points. By
comparison, the nonhomotheticity correction induces a gap of 38 percentage points relative to
the standard measure. These results show that the magnitude of the nonhomotheticity correction
can be as large as the well-known “expenditure switching bias” (or “substitution bias”) affecting

the Laspeyres and Paasche indices, which demonstrates its quantitative relevance.
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Figure 5: Nonhomotheticity Correction and Bias in Aggregate Real Consumption, 1984-2019

(a) Bias in levels (b) Bias for annual growth
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Note: This figure report the biases in the level of aggregate real consumption per household (Panel (a)) and in annual growth in real consumption
per household (Panel (b)). The bias is computed by applying Algorithm 1 to obtain the nonhomotheticity correction at the level of pre-tax income
percentiles; we then aggregate percentile-level results to obtain aggregage real consumption per household. Panels (c) and (d) reports patterns of
cumulative real consumption growth depending on the price index. All panels use geometric price indices.

3.3 Sensitivity Analysis

We now conduct several tests to assess the robustness of our findings. We first examine the sen-
sitivity of our results to alternative price indices, the second-order algorithm, and the inclusion
of controls, using the same dataset as in our baseline specifications. We then build alternative
datasets to assess the stability of the results depending on data construction choices and the level

of aggregation of expenditure data.”’

Alternative indices, second-order algorithm, and controls We implement several sensitivity
tests using the same datasets as in our baseline specifications. First, we assess the stability of the
results when using a Fisher price index formula along with our first-order Algorithm 1, instead

of using the geometric index formula. We also examine whether the results change when we

PIn additional robustness checks, we find that the results remain similar when using higher-order polynomials
to estimate the income elasticity of inflation, when keeping expenditure shares fixed at the 1984 or 2019 levels, and
with quarterly instead of annual data (not reported).
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use Algorithm A.1, which implements a second-order approximation. The results are shown in
Panels A(i) and A(ii) of Figure 6: the patterns remain unchanged with the Fisher index as well as
with the algorithm providing a second-order approximation.

Next, we assess whether the patterns remain similar when including controls. We implement
Algorithm 1 as in Section 3.2, but we now control for education, age, and race in the estimation
of the income elasticity of inflation in constructing the nonhomotheticity correction. Panel B of
Figure 6 reports the results, showing that the patterns remain similar. Likewise, Online Appendix
Figure D.5 shows that the annual bias in growth measurement remains almost unchanged when

controls are included.
Figure 6: Sensitivity Analysis

Panel A: Alternative price indices and second-order algorithm
(i) with 1984 prices as base (i1) with 2019 prices as base
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Note: This figure report the biases in the level of aggregate real consumption per household due to the nonhomotheticity correction under
different specifications. Panel A reports the results under alternative price indices, geometric or Fisher, with the first-order algorithm, as well
as with the second-order algorithm. Panel A(i) uses 1984 prices as base, while Panel A(ii) uses 2019 prices. Panel B reports the results with the
geometric index and the first order algorithm, controlling for education, age, and race in the estimation of the income elasticity of inflation.

Sensitivity analysis with alternative datasets To assess the sensitivity of our findings to data

construction choices, we build and study four alternative datasets.”

30nline Appendix C provides a complete description of the data construction steps.
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To document whether our results are sensitive to aggregation choices, we build two alternative
datasets which closely follow our main dataset but use different levels of aggregation, grouping
UCC:s into broader categories. First, we create a version of the dataset at the level of the 32
product categories from CE summary tables, which are available from 1984 to 2019. Online
Appendix Figure D.6 reports the results, applying Algorithm 1 to this dataset. The results are
very similar to those obtained with our main dataset, with slightly smaller magnitudes due to the
higher level of aggregation.’!

Second, we manually group the 598 UCCs into 114 mutually exclusive product categories
that are continuously available from 1984 to 2019. The results are reported in Online Appendix
Figure D.7, showing that at this level of aggregation the results are almost indistinguishable from
the results obtained with our main analysis dataset.

Moreover, to document the magnitude of the nonhomotheticity correction with highly dis-
aggregated data, we implement our algorithm for a subset of expenditures for which product-level
data is available, using Nielsen data covering consumer packaged goods, or about 15% of aggre-
gate expenditure. This robustness check is motivated by prior work showing that most of the
heterogeneity in inflation rates arises at the product level, within detailed product categories (Jar-
avel, 2019). We assess whether using product-level data meaningfully affects the size of the bias
we estimate, at the cost of restricting attention to a subset of total expenditure. To implement
this robustness check, we work with the Nielsen data from 2004 to 2014. Although the data
cover a shorter time horizon, the annual level of inflation inequality is larger and the impact of
the nonhomotheticity correction is stronger, as shown in Online Appendix Figure D.8 . The
magnitude of the annual bias in real consumption growth increases faster than in our alternative
datasets, reaching 3% of the uncorrected measure after only a decade.

Finally, we implement a robustness test inspired by the distributional national accounts of
Piketty et al. (2018): we discipline our household-level data such that aggregate expenditure shares
match exactly the official CPI consumption weights used by the Bureau of Labor Statistics (BLS)
for eight product categories. Indeed, BLS makes available the aggregate consumption weights
used when calculating CPI, which may differ from the expenditure shares in the CEX micro-
data.’”” These weights are available at the level of eight consistent product categories from 1955 to
2019. We discipline our household-level CEX micro-data by introducing scaling factors, which
are uniform across households but are allowed to vary across the eight categories, such that aggre-

gate expenditure shares from our micro-data match exactly the aggregate consumption weights

31The fact that the results are slightly weakened with more aggregated data was expected since inflation inequality
is weaker when working with more aggregated product categories (Jaravel, 2019).

32The official CPI consumption weights are available at https://www.bls.gov/cpi/tables/
relative-importance/home.htm.
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used by BLS for the eight product categories.” This robustness check thus allows us to check
whether our results are sensitive to data construction choices about expenditure patterns. We
obtain very similar results to our baseline dataset, as shown in Online Appendix Figure D.9. For
example, using 2019 prices as base, the average level of real consumption per household is under-
estimated by 11.7% in this robustness check, compared to 11.4% in the baseline specification.
Overall, these robustness checks show that the findings obtained with our baseline dataset are
not sensitive to data construction choices. Moreover, the finding that the correction is stronger
with more disaggregated data highlights the importance of using micro-data to accurately measure

growth in consumer welfare with income-dependent preferences.

4 Measuring Welfare Changes with Observed Heterogeneity

In this section, we extend the results of Section 2.2 to a setting including additional sources of
observed consumer characteristics that change over time, beyond income. Examples of such
characteristics include the age and education of consumers, or the number of household mem-
bers. Focusing in particular on the case of age, we use our theory to quantify the correction to

aggregate real consumption implied by consumer aging in the United States.

4.1 Correction for Change in Consumer Characteristics

Assume that we observe a vector of consumer characteristics (covariates) , € R? at time ¢.*
We assume that consumer preferences are characterized by a well-behaved utility function #» =
U (g; ) that depends on the consumer characteristics. We let y = E (u;p,x) denote the cor-
responding expenditure function. As before, we assume a path of prices p, and let w, , (y;x)
denote the expenditure share on good 7 for a consumer facing prices p,, with total expenditure
y and characteristics . We first define our generalized concept of real consumption in this envi-

ronment.

Definition 3 (Generalized Real Consumption). For reference prices p, (with 0 < b < T), define
real consumption under period-b constant prices for a consumer with utility # and characteristics

& as a monotonic transformation M, (u,x) of utility given by

P =M, (u;2)=E (u;p,;x). (22)

3See Appendix C for a detailed description of this step.
3*The assumption that the elements of the vector are positive valued is without loss of generality, as we can always
transform the characteristic space in such a way that this condition holds.

33



Definition 3 generalizes Definition 1 to a setting in which preferences potentially depend
on consumer characteristics. We cannot compare welfare across consumers with different char-
acteristics since they have distinct preferences. However, we can still compare the expenditure
required by consumers with such distinct preferences for any level of welfare when they face iden-
tical prices. Therefore, we can state that the real consumption of a consumer with preferences
x, with utility #, is higher than that of a consumer with preferences @, and utility #, by the
amount ¢/ — ctl; =M, (u,;x,)—M, (Mto;w%), using reference prices p,.

Let us investigate the definitions above under two special cases. First, if consumer preferences
do not change, i.e., x, = z,, then the definition above reduces to our Definition 1, given under
homogeneous preferences. Second, if prices do not change, i.e., p, = p, , the growth in real
consumption simply accounts for the growth in nominal expenditure even if consumer charac-
teristics change, ¢’/ ci =2,/9,,

In parallel to the definitions introduced in Section 2.1.1, we denote by y,” (c;z) = E (M, (c; ) ; 2)
the mapping from real consumption to expenditure at time ¢ for a consumer with characteristic
vector x. The following Proposition generalizes Proposition 1 to account for potential changes

in consumer characteristics.

Proposition 3. Consider a path of prices pt and preferences that lead to the generalized Divisia
index function D, (y;x) = >, e, : (y; ) Loslue gp” over the interval [0, T]. The mapping from real
consumption to total expenditure y ! (+;-) at time t is the solution to the following differential equation

with initial condition )(lf’ (c;x)=c forall x:

Jlog /! (c; @)

2, =logD, ()(tb (c;x);a). (23)

In addition, for any path of total nominal expenditure y, and vector of characteristic , over the
interval, the growth in real consumption, defined under period-b constant prices, at any point in

time satisfies

dlogc? 1 dlogy, b d dlogx,,
= —logD, (y,; I ; L, 24
P 1+Af’(ct,:v)|: P og yt Z dt dt (24)

where the nonhomotheticity correction function A, (c; ) and the characteristic-d correction function

I, (c;x) are grven by

dlog y?! (c;x) dlogy}! (c;x)
A ()= —24 2", It (c;x)= —=24 2" 25
¢ (652) dlogc 1:(6:®) d log x4 23
Proof. See Appendix A.2. O
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Proposition 3 extends the same insight behind Proposition 1 to the case with preferences
that depend on consumer characteristics. It shows that the knowledge of the Divisia function is
sufficient to uncover the mapping between real consumption and total consumption expenditure.
The main difference is that we now need to know how the Divisia function depends both on total
consumer expenditure and on consumer characteristics.

Let us now define the true price index 9[5 , (c; @) under characteristic-dependent preferences:

P} (c;2) = ;;b EC w; 26)

which is a generalization of the definition in Equation (3). This index measures the growth from
period ¢, to ¢ in the cost-of-living corresponding to a constant level of real consumption ¢ for a
consumer with a constant vector of characteristics €. As before, we can express the true price
index as loggb f logD_ ( vl (c;x);x ) dt. By characterizing the mapping y/ (c;x),
Proposition 3 also fully characterizes the true price index in terms of the generalized Divisia
function.

Proposition 3 further characterizes the instantaneous growth in real consumption. In addi-
tion to the nonhomotheticity correction, defined just like before, we also need the characteristic

_ dlogyt _ log?)

correction function index I? = = L which captures the elasticity of the true price
d,t Jdlogx Jdlogx

index with respect to consumer characteristics. This index allows us to account for the effect

of changing consumer preferences (through changes in observable characteristics) on real con-
sumption. Similar to the nonhomotheticity correction function, these characteristic correction
functions account for the cumulative cross-product covariance between price inflations and the

elasticities of demand with respect to each characteristic:

dlogpi'r
ca:) f )(T( )T ) fd,T(c;w)T’ dr,

dlogeo; (xt(c))
Jdlogxy
with respect to characteristic d.

where ; ;, (c;2) = accounts for the elasticity of the expenditure share of good-:

To see the intuition behind these results, consider an aging consumer and assume that infla-
tion is on average higher for goods that are elastic with respect to age. In this case, over time there
is an increase in the level of expenditure required to maintain the same level of real consumption
for this consumer, due to the aging-induced reallocation of expenditure toward goods with prices
that are rising faster. Holding prices fixed as in the initial period, Equation (24) shows that we

. . . - dlog 2t (c;;x,) 4
need to deflate the growth in nominal expenditure by an additional term, g;’ge — = 1o
t
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account for the effect of aging on real consumption growth. Thus, when reference prices are set
as the initial base period, conventional measures of real consumption growth are biased upward
because they do not account for the fact that, as people age, the relative price of the products they
favor increase. As in the case of nonhomotheticity, the sign of the bias inherently depends on the
choice of the base period for prices. Holding prices fixed in the final period to express real con-
sumption, conventional measures of real consumption growth are now biased downward since,
going backward in time, consumers are getting younger and the relative prices of the products

the favor is falling.

4.2 Approximating the Characteristic Correction Function

We generalize Algorithm 1 to account for variations in observable consumer characteristics and
to approximate the characteristic correction function introduced in Section 4.1. Algorithms A.2
and A.3 in Appendix A.1.2 achieve these generalizations based on first-order and second-order
price index formulas, respectively.

The idea underlying our approach is similar to that of Algorithm 1: starting in the base pe-
riod, we nonparametrically estimate the relationship between the measured price index formulas
across consumers and their total expenditures and other characteristics. We then use the estimated
relationship with total expenditure and with other characteristics to approximate the correspond-
ing correction functions. Propositions A.3 and A.4 in Appendix A.1.2 establish the error bounds

on the approximation error for these algorithms.

4.3 Application to the Measurement of Real Consumption in the US with

Consumer Aging

In this section, we apply our approach to data from the US on aging and quantify the magnitude

of the bias in conventional measures of real consumption growth.

Data and summary statistics To study the impact of consumer aging on real consumption
growth, we build another version of our main analysis dataset where cells now correspond to
age and income deciles, rather than income percentiles. Specifically, using the CEX data, in each
year we define ten deciles of the (pre-tax) income distribution and, within each income decile, we
compute ten age deciles. We then compute average age within each of these cells.”

Using this dataset, we compute inflation rates across age groups and find higher inflation

rates for older households, as shown in Panel (i) of Figure 7. This panel reports the cumulative

3Like in our main dataset, we use years 1960 and 1972 to interpolate expenditure shares. Online Appendix C
provides a complete description of the data construction steps.
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Figure 7: Consumer Aging and Real Consumption

(a) Inflation by Age Decile, 1955-2019 (b) Bias in the Level of Real Cons.
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Note: Panel (a) of this figure reports the cumulative geometric laspeyres index, from 1955 to 2019, for each age decile.
Panel (b) reports the bias in the level of real consumption per household due to the aging correction, relative to the
non-homothetic specification without aging correction. Algorithm A.2 is applied to our dataset at the level of
“age decile by income decile” units, using geometric laspeyres price indices. We then aggregate the results to obtain
aggregage real consumption per household with the aging correction.

inflation rate by age deciles, using the geometric index between 1955 and 2019. The age elasticity
of inflation is positive, especially for older ages. Between 1955 and 2019, cumulative inflation
rates diverge by about 200 percentage points between the first and tenth age deciles. Thus, the
relative price of products purchased by younger households has been falling over time. To the
best of our knowledge, this paper is the first to provide evidence on inflation inequality across
age groups over a long time horizon. Online Appendix Figure D.10 reports additional patterns
on inflation across groups, showing that the age elasticity of inflation was higher at older ages in
all periods.

As reported in Online Appendix Figure D.11, average household age has been on the rise in
the U.S., especially from 1970 onward. Therefore, by the logic of Section 4.1, conventional mea-
sures of real consumption must be biased upward. We now proceed to quantify the magnitude
of this bias.

Aging correction for aggregate real consumption We apply Algorithm A.2 to quantify the
adjustment to aggregate real consumption implied by consumer aging. Panel (b) of Figure 7 report
the results. Specifically, we report the deviation in the level of aggregate real consumption when
accounting for both aging and nonhomotheticities, relative to the benchmark measure with only
the nonhomotheticity correction.”

Using 2019 prices as base, we find a meaningful aging correction: in 1955, the benchmark

In the dataset with age-by-income cells used for our analysis in this section, the effect of the nonhomotheticity
correction (relative to the standard homothetic real consumption measure) is close in magnitude to the bias shown
in Section 3 with our baseline dataset using income percentiles.
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measure overestimates real consumption by about 1.2%. Intuitively, households in 1955 were on
average younger than in 2019, and the price of product categories purchased predominantly by
younger households was higher. Therefore, society as a whole had lower real consumption in
1955 than commonly thought, i.e. the conventional measure that does not account for consumer
aging is biased upward.

Using 1984 as base, the correction becomes much smaller, although it has the same sign. The
benchmark measure overestimates real consumption by about 30 basis points in 2019. Intuitively,
households are on average older in 2019 than in 1984 and the relative price of goods purchased
by older households has increased over time, i.e. society is worse off in 2019 relative to standard
measures without the aging correction.””

In sum, these patterns illustrate that changes in consumer characteristics such as age can have a
meaningful effect on the measurement of aggregate real consumption, depending on the choice of
base prices. In the case of aging, the adjustments are economically meaningful but much smaller
than the nonhomotheticity correction, which justifies our focus on the latter. While there is
a strong relationship between age and inflation, the correction to aggregate real consumption
implied by aging is smaller than the nonhomotheticity correction primarily because the change

in average household age over time is relatively slow.

5 Conclusion

In this paper, we extended the results of the classical index number theory to settings in which
composition of demand depends on income (nonhomotheticity) and other consumer character-
istics. We developed a procedure for nonparametric measurement of consumer welfare based
on price index formulas, imposing minimal restrictions on the underlying preferences. This ap-
proach remains valid under any observable household heterogeneity in preferences, and requires
only data on spending patterns in a cross-section of households.

We showed the practical relevance of the correction for nonhomotheticities when computing
long-run growth in consumer welfare. With our correction taking 2019 prices as base, growth
in consumer welfare is significantly attenuated in the United States in the post-war era, due to
the combination of fast growth and lower inflation for income-elastic products. The correction
reduces the annual growth rate from 1955 to 2019 by 18 basis points, which is larger than the
“expenditure switching bias” affecting Laspeyres and Paasche indices over the same time horizon.

Extending this analysis to other countries and time periods, as well as to the measurement

3To understand the difference in the magnitude of the aging correction depending on the choice of base years,
note that the speed of consumer aging is slower before the 1980s, and that the covariance between inflation and
household age is also weaker before the 1980s, as showin in Online Appendix Figures D.10 and D.11.
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of purchasing power parity (PPP) indices across countries with preference heterogeneity, is a

promising direction for future research.
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A Theory Appendix

A.1 Additional Theoretical Results

In this section of the appendix, we present a number of additional theoretical results. First, in
Section A.1.1, we discuss the algorithm providing a second-order approximation to the true price
index in the presence of nonhomothetic preferences. We then present two propositions establish-
ing error bounds for the first- and second-order algorithms.

Next, in Section A.1.2, we provide the algorithms that allow us to approximate changes in real
consumption growth to the first and second orders of approximation in the presence of changes
in household preferences that relate to observable household characteristics. In each case, we
first describe the algorithm and then state a proposition characterizing its approximation error

relative to the true price index.

A.1.1 The Second-Order Algorithm and Results on Approximation Errors
Second-Order Algorithm

Algorithm A.1. Let ¢} =y}, and consider the sequence of power functions {f,(z) = zk}fi , Where

K, grows with N, the number of consumers in the cross-section. For each t > b, apply the following

steps:

1. Initialize the values of the real consumption in period ¢ + 1 using the first-order algorithm:

~11,(
Evaluate ¢, -

f ) using Equations (20)-(19) as in Algorithm 1.

() Iteratively find the real consumption in period ¢ + 1:

Iterate over the following steps over = € {0, 1,---} until convergence for some toler-
ance e K 1.

1. Nonparametrically fit a first-order term needed for finding the true price index

between periods ¢ and ¢ + 1:

Solve for the coefficients <&\Z t>K in the following problem:

N K 2
min (=l 1) ) )
(a/:,z)k:o n=1 k=0
where 71} =logPg (P, 11587, 3P;» 8} )--
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ii. Nonparametrically fit the true price index between periods ¢ and ¢ + 1:

Solve for the coefficients < B\ k>t>:—o in the following problem:

K 2
min > :<n:’”+,o?’<f>—§ Bt (1og?Z’)> : (A2)
k=0

(a’“/eo

with 07" is defined as:

ENJIESN

(1)
ﬁ: t[fk (logcy )—i—f,e<logcﬂr1 )]log<ctrl > (A.3)

k=0 t

and where 77" is the value of a second-order price index for consumer 7, that s,
* T — .
;" =logP, (pt, 873D, 4 15 s;’H).

iii. Estimate the values of real consumption for consumers in period ¢ + 1:

Update the real consumption in the next period for each consumer

~1, ~n,(T 1 ytn-‘rl 4
logctJrl =logc, . )—I- = = <10g< . >_ ”:’n>’
[A ( ¢ ) At+1 <Ct-;-(l )>] Vi
(A.4)

where we have defined the approximate nonhomothetic correction function as:

+1
IOE Z< > B T>fk (logc). (A.5)

NIH

= T=b+1
- TR e _ (o) _ (e
1v. Stopplng criterion: lf max, Ct-H t-H = Ct—H .

Function @’t L(O=3%, (Zi’;lb " ,B\ k’T> /1 (logc) provides a second-order approximation for
the true price index function ,@bb .41 (c) defined in Equation (11). Equation (A.4) then updates

our current guess C 1 *) about the next- period real consumption.

+

Results on the Approximation Errors The following proposition establishes error bounds
for the approximation error of the sequence of values of real consumption growth constructed
by Algorithm 1 in the main text for all > b, as T, K, and N go to infinity, under the specified

regularity assumptions.

Proposition A.1. If the assumptions laid out in Section 2.3.1 hold with A = max {A YA }, and if
the expenditure function logE (-;-) is continuously differentiable of order m > 5, then as N and K
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grow toward infinity, the sequences of real consumptions constructed by Algorithm 1 satisfy:

() (ool o))

Proof. See Appendix A.2. O

Proposition A.1 shows three sources of approximation error in the results produced by Algo-
rithm 1: 1) the index formula approximation error implied by Lemma 2, which is second-order
in A; 2) the error due to the approximation of the true price index function 22, ,(c) based on the
cross-section of consumers, which falls as we observe more consumers N and if we choose K
such that KJ,/N — 0; and 3) the error due to the functional approximation using a finite set of
basis functions, which falls as we choose a more flexible set of basis functions by increasing K
and thus reduce the term K3, .

The following proposition establishes that Algorithm A.1 yields a second-order approxima-

tion to the true price index between any periods ¢ and ¢ + 1.

Proposition A.2. If Assumptions laid out in Section 2.3.1 hold with A = max{A ,A }, and if
log E (+;-) is continuously differentiable of order m > 5, then the sequences of real consumptions ¢’
constructed by Algorithm A.1 satisfy:

1g<C: >—1 <2“>+O(A3)+o <K]3v<\/%(A3+K;‘V_’”)2+K;’”>>, (A7)

if we choose the tolerance of the loop in the algorithm to be ¢ = O (A?).

Proof. See Appendix A.2. O

A.1.2 Approximating Welfare Changes with Observed Heterogeneity
First-Order Algorithm

Algorithm A.2. Let ¢} = ¢} = ¢} and consider a sequence {f,(c, x)s oo

and x where K, depends on N, tbe number of consumers in the cross-section. For each t > b, apply

of log-power functions of ¢

the following steps:

1. Nonparametrically fit the true price index berween periods t and t + 1:

Find the coefficients (@, ;:) o Solving the following problem.:

(ml)n Z(ﬂ: _Za’ktfk > , (A.8)
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n — n. n
where 7 =logP, <pt,st ’pt+1’8t+1>'

2. Estimate the values of real consumption for consumers in period t + 1:

Compute the real consumption in the next period for each household:

1 D Xd,t+1
logc?,, =logc! + —— |:log yh ) —nl—=> T, 1(c”;a:”).log<’—
t+ t 1+At+1 (?Zl;w?) < t+ l’) t ; 4+ t t xd’t

(A.9)

where we have defined the approximate nonhomotbheticity correction function as:

N Ky / t+1 3f, (c, )
R(c) = < %) lez) (A.10)
D=2 2 ) Tge
and the following approximation for the characteristic-d correction function:

R Ky t+1 J ¢,
Ly (o) = Z< Z ak,r) M

k=0 \t=b+1 Jdlogx,

Proposition A.3 establishes bounds on the approximation error of the sequences of real con-
sumption growth found by Algorithm A.2. The main additional requirement, compared to

Proposition A.1, is that we now require the expenditure function to be infinitely differentiable.

Proposition A.3. If Assumptions laid out in Section 2.3.1 hold with A = max {A RYAW Ax} , where

the maximum change in the logarithm of the characteristics across consumers in bounded above by a

n
xd,t+1
log
xn
d,t

and if expenditure function logE (-;-) is an analytic function (continuously differentiable of oo de-

constant A\ _ such that

<A, (A.11)

max
d,n

gree), then the sequences of real consumptions constructed by Algorithm A.2 satisfy for any positive

integer m:
tog () = log( 1) 4 0(22) 4 0, (K3 [/ Kx At 1 k7 A
og = =log = + < >—|— P\ KNV R +Ky . (A.12)
t t
Proof. See Appendix A.2. O

With the stronger assumption imposed by Proposition A.3 on the differentiability of the
expenditure function, we find a tighter bound in Equation (A.12). With K, — oo and K;/N —
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0, the error in our approximation converges to zero.

Second-Order Algorithm Next, we provide a second-order approximation holding under ar-
bitrary observed heterogeneity across households. Algorithm A.3 and Proposition A.4 thus pro-
vide generalizations of Algorithm A.1 and Proposition A.2, respectively, to the cases involving

observed heterogeneity.

Algorithm A.3. Let ¢} = ¢} =y} and consider a sequence {g,(c, m)}fﬁ » of log-power functions of
¢ and x where N is the number of households in the cross-section. For each t > b, apply the following
steps:

1. Initialize the values of the real consumption in period t + 1 using the first-order algorithm:

Initialize the values of the real consumption ¢ +1 %) for each household at t + 1 using Equations
(20)-(19) as in Algorithm A.2.

2. Apply the loop to find the real consumption in period t + 1:

Iterate over the following steps over T € {0, 1,- - - } until convergence for some tolerance ¢ K 1.

(a) Nonparametrically fit a first-order term needed for finding the true price index between
periods t and t + 1:

Solve for the coefficients <a£,t>f:o in the following problem:

N K 2
i S-S A ) A1)
Pt Jpmo = =0
where 1t =logP (ptH, ST 5D, 3?)
(b) Nonparametrically fit the true price index between periods t and t + 1:
~ K
Find the coefficients < B k”f)k—o solve the following problem:

K . 2
(ml)n Z(ﬂ?’*w?‘”—Zﬁk,tﬂ (??,w?)> , (A.14)
kot )p—g k=0

where 1} =Py (p,,875D,41, 87, ) and where o) is defined as:

K ~ n af T ~n,(7T)
n(e) — 14 fi (s xp) k( Crt1 ! t+1> 1 € AL5
Pr = 4Zak’t dlogc + dlogc o8\ (A.13)

t
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D K n
+EZZE{\Z gfk(?f,wt)+8fk<t+l ’ t+1> log Xd,t+1 .
4=l ki Jlogaxy dlogx, Xy,
(A.16)
(c) Estimate the values of real consumption for consumers in period t + 1:
Update the real consumption in the next period for each household:

A\ T AN T 1

log t+(1 = loger™ + — (A.17)

1+ % [Xr (c7sx7) +A <?:1J;(1T>;m:l+1>:|

Vi 1 & N " ,, Xd,t+1
X |:10g<_n> - 5 Z I:rd,t (Ct 3L, ) + I‘d,t+1 <Ct+1; wt+1):| ’ log <—> :|>

xd,t

(A.18)

where we have defined the approximate correction functions as:

K +1 P
A, ( Z< > ,6;”> AGLI) (A.19)

k=0 \r=b+1 Jloge
R Ky [ t+1 af ¢, )
£, <c;m)zz< S s > (02) (x.20)
t k=0 \c=b+1 Jlogx,
) S oringe ] oletl) __ani(1) — (7+1)
(d) Stopping criterion: if max, (¢, ot =T

Finally, Proposition A.4 establishes bounds on the approximation error of the sequences of

real consumption growth found by Algorithm A.3:

Proposition A.4. Assume that the same conditions as those in Proposition A.3 hold. Then, the se-
quences of real consumptions constructed by Algorithm A.3 satisfy:

)0t (55 o)) o

where A = max {A VAW Ax} and m is any positive integer and where we have chosen the tolerance

of the loop in the algorithm to be e = O (A%).

Proof. See Appendix A.2. O
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A.2 Proofs

Section A.2.1 presents the proofs of all the results in the main text and in Appendix A.1. Some
of these proofs in turn rely on additional lemmas that are presented and proved in Section A.2.2

below.

A.2.1 Proofs of the Main Lemmas and Propositions

In this section, we present the proofs of the main lemmas and propositions. Some of the proofs

rely on additional lemmas derived in Section A.2.2.

Proof of Lemma 1. First, using y! (c) = E (M, (c);p, ), note that

dlogy?(c) _ JdlogE(u;p,)

dloge  Jdlogu
— JlogE(u;p,)/d logu |
JlogE(u;py)/d logu u:Mb_l(c)’

dlogM; " (c)
dlogc

5

|1¢:Mb_l(c) )

d logMb_1 ) 1

Jdlogc — JdlogE(uspy)/Jdlogn u:M;I(c)'

where in the second equality, we have used the fact that

alogt@;ﬁt(c) _ Qlog)([b(c)

Then, using Proposition 1 and A’ (¢) = Tos = Jhec — bwe have:
dlog /(0
by { b Jdlogc
dloge 1+4 (Cr > : c=c/t
= —— = , (A.22)
dloge,"  14A; (C: 2> F1og.22(0)
Jdlogc ,
c=c,?
JdlogE(u;p,)/3 logn
dlogE(u;py, )/2 logu ey dlogE <14;pr> /J logu
dlogE(u;p,)/3logn glOgE<%’pbl>/a lOg% nw=nu,
c?logE(u;pbz)/alogu
b b
% log)(b; (c) b d log‘@bljbz (c)
Al T O S
dloge | 2 dlogc _ch
O

Proof of Lemma 2. From the definition of the true price index in Equation (3), we have log 2., (c) =
log 2, (c)—log x? (c). Following Lemma A.1 in Appendix A.2.2 and using a first-order Taylor

series expansion of the expenditure function y/,(c) = E (Mb_l (¢);p, +1> around the vector of
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prices p,, we find:

log‘@[i+1 (¢) :Z w;, (th (c)) <pl;t+1> +0 <A2> (A.23)

it

where we have used Shephard’s lemma in the second step to write the price elasticity of the

expenditure function as the expenditure share of the good, i.e.,

dlogE (M, (c);p,)
glogpi,t

=, (x/ (). (A.24)

If the preferences are homothetic, we have s;, = w;, (x/ (c,)) =

(x! (c))forall c and the

desired result follows. Otherwise, using Lemma A.1 and performing a first-order Taylor series

i,t

expansion of the share function, as a function of real consumption ¢_ around real consumption

¢,, we find:

8C‘)it tb(c)
wi,z<xf<6>>=5ir+# l°g< >+O<(1°g

I

where we have substituted 5;, = w, , ( e (c,)) on the right hand side. Substituting the above

equation in Equation (A.24) and using the definition of the geometric index in Equation (7), we

find

! awit tb (Ct) 1,t c
log‘@tf’lf+1 (c)=logP. (pt,st;pt+1,st+1>+log<£> Z : <X > log<pp’ +1> +O<‘log<z

t =1 8 log ¢ 1,t

If ¢ = c,, then we immediately find the desired result. If ¢ = ¢, ;, we first use Lemma A.2 in
Appendix A.2.2 below to let <log<c‘c—+1>>2 = O<A2>, where A = maX{AP,Ay}. Then, since
the expenditure function is second order continuously differentiable, we can use the fact that

dew; (yk(c)) . . . . .
% is bounded, and thus the second term on the right-hand side of the equation above is
t

of the order O (A?), which yields Equation (14).
For the second order approximation, we apply the second-order expansion in Lemma A.1 in

Appendix A.2.2 to the expenditure function £ (M L (0); p), which yields:

—1
(€);Pryr)
1 b =1 < 5
og%,m(c) °% E<M 1(0),1%)
1 1

- 2 Z[ it+1 )(t+1 )) tw;, ()(tb (C)>] log <pi,t+1> +0 <A;> ) (A.25)

1=1 1,t
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where we have again used Equation (A.24). Assuming homotheticity, we have thats;, = w; , (x/ (c))
for all ¢ and the desired result follows. Otherwise, using Lemma A.1 in Appendix A.2.2, applied

to the Hicksian expenditure share function, we find:

awz t <Xt ( )) &)wi,t <)(tb (C)>
dloge, * dlogc :| 10g<

J+o(flos(:)])
zt+1<)(t+1< t+1>>+9wz t+1<)(z+1<c)>]log< ¢ >+O<‘log<ci>

Jdlogc dlogc
Substituting this expression in Equation (A.25), using Lemma A.2 in Appendix A.2.2 to write
fos )

a)i,t <)(tb (C)> =Sit + 5 2 |:

t

Jdw
Wi 141 <th+1 (C)> =S T3 7 {

t+1 C[—i—l

= O(A), and using the definition of the Térnqgvist index in Equation (7), we find:

log‘@tl,?pl-l (c)= logPT <pt’8t;pt+1’8t+1>

deo,, (1 (0))  dws(xh )] [\, (2
1 i it \At \t¢ it \At c it+1
T2 Og<ct> p |: dlogc, * Jdlogc 10g<c >10g ; >

1 ty 1,t

+110g< C >Z aw;t—i-l()(t-‘rl(t+1>>+8601t+1<)(t+1 C)) 10g<£>l og pzt+1 +O<A3>
’ Cv1/ o ¢

dloge, dlogc : s
(A.26)

where A = max {A »A, } Now, we use the third-order continuously differentiable property of

the expenditure function to find

awi,t” <th;/ (Ct’)> _ awi,t <)(tb (Ct)>
dlogc, ~ Jlogg,

+0(4), t't"el{t,t +1},

which we use to substitute for the expressions within the square brackets in Equation (A.26).

This leads to the following result:

log‘@t,bt-i-l (C) = lOgPT (pt’ St;pt—i-l’ St+1>

2 1 w. b c
+10g|:c(c) ]Za l;(%t ( t)) log<pzt+1>+O<A3>

t " Crp i=1 d log ¢ it

Thus, letting ¢ = , /¢, ¢, 5, the second term on the right hand side vanishes and we obtain Equa-
tion (15), as desired. O

Proof of Proposition 2. First, note that since the expenditure function is second-order continu-

ously differentiable, using Lemma A.1 in Appendix A.2.2 for function w; (y; b(e); p) around
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(p,,c,), we have

10g<5iz_+1> :Z gloga)l- ()(rb (Ct);pt> log<pit+1>+‘910gwi <)(tb (Ct);pt> 10g<ct+1>+o <A2>,
[ ¢

5; glogpit pit alogct
(A.27)

it
where A=A if preferences are homothetic, and A = {A A } Using the second order contin-

uously dlfferentlable property of the expenditure function, we conclude that log ( i ‘“> =0(A).

For the Laspeyres price index formula, we have:

logP, =log <Z s;, Bt > :
- 10g<1 + s, log (et ) + %Zsif (1og(f’p—))2 + O(A3)>,

= S5+ 3 (52 =3 (o a3+ (s ) + 0120

zlogPG+O<A >,

where in the second equality we use the Taylor series expansion of exp (x) for x = log ( b ’“) and

in the second equality we use the Taylor series expansion of log(1+x) forx => . s;, log < Birs1 >—+—
2
2 (log((75:2)) +O(8)

For the Paasche price index formula, we find:

logP, =—log <Z S”_pr >,

1t+1

:—log<1—zsn+1log< > 2ZS,t+1 <log< >> +O<A3>>

T Tl
_Zs“x f“xlog( )

=logP.+0O <A2> ,

2
) ) +o(a)

where in the first equality we use the Taylor series expansion of exp (—x) for x = log < Birs1 > and in
the second equality we used the Taylor series expansion of log(1—x)forx =35, log < Biss >

3 S S <Iog<p Ll )) +0O(A?). In the last equality, we use the fact that log<5 il ) O(4) from
Equation (A.27) above

A10



For the Fisher price index formula, we repeat the same steps used in the arguments above for

the Laspeyres and Paasche indices:
logIPF:%logP +1logpp,
= 3los(; (%))—llogé-w&f—tl))’
:§10g<1+25 og (1) 41 37, (o2 >>>
——log<1—zsf+llog<w>+zzsm (os(52)F )+ ).
=L Sl sl 44 o (252)) — § S lon ()
+3(zsmog%—;zi:s”+1<log<ﬁ;:>>2)z
—i<Zsz-tlog<f’;1?>+%Z%z<log<";ztl>>2>2+O<N>- (429)

To simplify this expression further, note that using Equation (A.27), we have

e = exp <Iog<5";f1>> —1=0(4),
v (lg(52))" =0a", 1<

where we have let 5;, = 5 (s;, +5,,,,) - Using this result, we can rewrite Equation (A.28) as
L)) +o(4)
) S o) s (o025 s o
X[Zs-m 8(52) 4 S (52 + a2 + £ o 52
—logy— 3, (24575 (o ()
[2s< - )log(2)— 35l
| S o1 )72%(”2%”)(10%(”;2?))2} +o(®)

1
lOgPF = lOgPT - Z Z(Sit—i-l - 5it> <10g<

T P

>>2}

All



=logP; +0(4A%).

Finally, for Sato-Vartia, we begin with the following approximation:

s _ 3 (1) + 3 (1-2)
log< ”“) log<L“> ’

= 5s(14300 <“:> <log<““>>2>
s (13108 w) <1og<n+l>>2)

where in the second equality, we use a Taylor expansion of exp (x)—1 for x = log <S‘—“> to simplify

241 — 1, and a Taylor expansion of 1—exp(—x) for x = log< “+‘> to simplify 1— =, We use

the former approximation again in the fourth equality, as well as Equation (A.27). Substltutmg

this result in the definition of the Sato-Vartia price index formula, we find

= (s Yo 22)

Sit

logP¢ = )

S| L

o %7

B logP-+ O <A3)
T 140(A?)
=logP,+ O <A3),

where we use the fact that 3.5, = 1. O

Proof of Proposition 3. We can write the growth in consumer expenditures as

dlogE (Mb_l (ct);pt,a:t> _ Z dlogE (Mb_l (ct);pt,a:t> dlogp,, +Z dlogE <M;1 (ct);pt,mt) dlogx,,

T ,- dlogp., dt 4 dlogx,, &
dlogE (M, (c,);p,»x,)dloge,
dlogc, de ’

A12



gy it and where we omit the base period superscripts & to sim-

where the left hand side equals
plify the expression. The desired result follows from the observation that c = E (M ) (€);Pps )

for all . O

Proof for Proposition A.1. We first establish a bound on the error corresponding to the approx-
imation of the nonhomothetic correction function A, (¢) with the nonparametric estimation

A, (c). By definition of the nonhomotheticity correction function, we have

_ 3 Xl (c X201 (0)
A,y (c)= lo< > Z 5 logc < > (A.29)

Jdlogc x2 (c) x2(c)

Applying Lemma 2, from Equation (14), we find that the geometric price index formulas com-
puted for each household in the cross-section provides an first-order approximation for the true
price index between periods b and b + 1 corresponding to the household’s level of real consump-

tion in the base period

b n
log <be—<6”)> = log P (P}, 873 Pp1:83,,) + O (43).
2 ()
Recall that in the base period, we also observe the real consumption index since it is equal to each
household’s level of nominal total consumption expenditure ¢} =y} .

In the base period t = b, Algorithm 1 first nonparametrically approximates the true price
index between b and b + 1 as a function of real consumption using an OLS regression of the log-
arithm of households’ geometric price index formulas on the polynomials (f,’s) of the logarithm
oo solve Equation (18) for £ = b. The

algorithm then takes the derivative of the function to approximate the elasticity of the true price

of their total expenditure. The resulting coefficients (2, b)

index function between b and b + 1 with respect to real consumption.

We next invoke Lemma A.3, presented in Appendix A.2.2 below, to bound the error in the
approximation of the elasticity. This lemma heavily relies on the more general results of Newey
(1997) for nonparametric approximations of any d-th order derivative of a differentiable function
(see Theorem 1 therein), but additionally allows for bounded errors in the observations of the
variable appearing as the argument of the function. We apply this lemma with the choices of
y" =), x" =logc), 2" =logcy, v" =8, =0,and A, = A; in the statement of the lemma.

The lemma implies the following bounds on the error of the approximation of the elasticity
2 ARICAVIESN [K e
I => (1 O, (K} 1/ 2 -At+K ") ).
dlogc Og< Xy () /e:oak’bfk(ogC)_'_ AN N Ay
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Therefore, we have:

~ K e
Ay (€)=2Ay 1 (0)+0O, <K13V<V WN'A;JrKN( 1)>>.

Applying Lemma A.4, the desired error bound follows for the first period r = b.
Following the steps of the algorithm, we next recursively apply Lemma A.3, with y” =
logP.. (pt, S73Dy s> s:’H), x" =logcy, z" =logcy, &, denoting the error from the previous pe-

riod’s approximation error, and A, = A%, which yields:

J )(tb 1 (c) & / Ky —(m—1)
e e A GRS )

solve Equation (18) for ¢. Note that the term O(J,) is of the same order as the

where (2, t) o
error term on the right hand side of the equation above and is therefore absorbed in that error.

Thus, we can apply Equation (A.29) for all ¢ to obtain:

Ay (©)=A () +|t—b]x O, <K13V<V WN A+ K 1)>>'

Applying Lemma A .4, the desired result follows for all ¢ from the observation that the contri-
bution of the error in approximating A, (c) to the overall approximation of real consumption

growth in ¢ evolves according to

Yer1lVe 3 /KN 4 —(m—1) | | _ 3 Ky —(m—1)
|t—b|XlOg<m>Xop<KN< WAP—FKN _OP KN WA;.’.KN ,

t,t+1

since |t —b| < T, log<%>:O(A) and T-'= O(A), 0

Proof for Proposition A.2. As in the proof of Proposition A.1, we first establish a bound on the
error corresponding to the approximation of the nonhomothetic correction function A, (¢) with

the nonparametric estimation A, (c¢). By definition, we have:

_ )(t+1 (c) t )(Tb“(c)
Af+1(€)_810gclo < > ZalOgc <be(c) >

Al4



To approximate this function, we first note that

bo(on I i1 3
10g<%t21—(;)>:%2[ <Xt (¢, )>+C‘)z t+1<)(f+1( n>>]log<p;—~>+o<A ),

b (c') i=1
:PT<pt’ :l;pt-i-l’ :Z+1>

__Z< Wi 11 )(r+1( ")> N dw; Jt+1 ()(H—l( t+1>>>log<£> log<Pi,z+1>
cl ’

dlogcr dlogey | : Piy
(A.30)

where we have used

et (e (@) | Fwien (e f“>>>log<c‘nf >+O (4%).

dw;
W; 141 <)(£H (Ctn)> =Wt <)(£H (Ctn+1)> 5 < J logc d logc
t

t+1 t

We now define

9 )=

Piit1
1 5
3 lOgC |:Z wl t+1 )(H—l g< pi’t >i|’

which allows us to rewrite Equation (A.30) as:

10g<);;+1((;>>> PT(pw 5P S t+1> [‘gﬂ( )+‘@T< t+1>]log<cé+l>+O<A3> (A31)

The key observation is to note that, through the definition of the geometric index, we have:

! n pi, n n
Z Wi 141 <th;+1 (Ct+1>> ) 10g< ptH > = —logPG (pt-i-l’ S, 15D S, > :
=1

1,t

We now invoke Lemma A.3, presented in Appendix A.2.2 below, to bound the error of the non-
parametric approximation of the second term on the right hand side of Equation (A.31),with

V" =P (Pyr1 874 15P,,87 ), x” =log ¢y, 2" =logey, v" =8, =0,and A, = A’. We obtain:
1
_Z I:gbj(ctn)""@j <Ctn+1>] :/0? +O<E>+Op <K§{_m>’

with p7 defined by Equations (A.1) and (A.3).
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Therefore, we can now rewrite Equation (A.31) as:

b n
X (el) . ) ) -
1og< ;;1((;;) >:Pr(pt,st;pt+1,st+1)+pt +0(6)+0, (K™ +0(4}).  (A32)
t t

This allows us to apply Lemma A.3 again, now with y” =P (pt, SYPysts s;’+1>+,0f, x" =logc’,
2" =logcl,and A, =O(€)+ O, (Ky ")+ O(A%),* to find

d )(tlif—l (C) _ Ky , 3 KN 3 2 m—1)
glogflog< w0 ) = 2 Pre filloge) + O (K 3 (MK + K7 ).

where we have used the result ¢ = O (A?). Thus, Equation (A.5) indeed approximates A, (c)

with an error bound that is | — &| times larger than that in the above equation. Applying Lemma
A5 in Appendix A.2.2 below and applying the same argument as in last step of the proof of
Proposition A.1 leads to Equation (A.7). O

Proof for Proposition A.3. We need to establish bounds on the error corresponding to the ap-
proximations of the two correction functions, A, (c;x) and T, (c;x), by Kt+1 (c;x) and
fd,t +1(c;). The steps are the same as in the proof of Proposition A.1, except that we now invoke
the multi-dimensional case of Lemma A.3, requiring the expenditure function to be infinitely dif-

ferentiable (i.e., an analytic function). This leads us to:

Ai(cz)=A L (c,2)+ 0, <Kz3v<

KN

N
T ) =T o (& (5N At f g
d,t+1(C!m)_ d,t+1(c’w)+ P N N + N )

where m is any positive number.

We next show that

c’ 1 y7 1
1 1) — ] ) —log 2 " A.33
Og< C[n 1+At+1 (CZ’,ZL‘?) Og tn Og t,t+1 (Ct wt) ( )
. D on x;'l,t-i—l 2
E L, (c;x})-log| — —I—O(A ), (A.34)
d=1 Xd.t

which, when combined with the above result, establishes the proposition. To derive Equation

(A.34), we perform a first-order Taylor expansion of the left-hand-side of the equation above in

AlThis step is similar to that in the proof of Proposition A.1.
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terms of g/, |, assuming that log( f“) =0(A):

n b n; n D al b(.n. .n
10g<%>:log<)(ﬂb—l(it. a::)>+z Og)(t (Ct ’wt)
t d=1

Xt (Ct’wt) alogxd

n
xd,t+1
-log
x?l
(csp@)=(c/'sPps1s@) ) dst

n

log< t+1>+o<A2>,
c

t

dlogE (c;p, )
dlogc

(csp@)=(c' P41 )

which leads to the desired result, with the definitions

il Xl (c;a))
A ) = log( 22 t2 ) A.35
t+1<c mt) &)logc Og< ){f(camﬁ ( )

El Xl (cs27)
L (g R EIGLAAY A36
d,t+1 (q wt) alogxd Og< )(bb (C;IB?) ( )

og yl(c;z? og yb(c;z?

noting that % =1and %g(x;[) =0forall z7. O

Proof for Proposition A.4. First, we establish the following result:

log<ctn+1> - ! (A.37)
¢/ 1+ % [At (Ctn; :E?) + At+1 (Ctn+1;m;l+1>]
D
|:10g<ym> TC?’* - %Z [rd,t (Ctn>w?> +rd,t+1 (Ctn+1;w:l+1>] log<xi;1 >i| ’
d=1

where 7} =logP; (p,,8};P,1,87,,). To show this, we rely on Lemma A.1 to obtain:

log <E> ~ log— M ()P i)

1 .
‘ E(M, (Ctn)’pt’w:l>
1| dtogE(u; () Jlog E(M; (" ypa)
=3 alog pl dlogp;
(esp)=(c]'spy ) (ep@)=(cl, 3Pyl )
D —1
po | Loty ) 2 log £ )
2 ogpl dlogp;
d=1 (GP:‘”)E(C;?;I%::E?) (C P, :1: z+1 Pryt wu—l)
a logE ”) a logE(Mb_I(c”);p,a:”) 1
d log P; Jdlogp; - 108
(sp,m)=(c)sp, ) (sP)=(cl 3Pes1s®ly )
+ O

Al7
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pz t+1
Pu

xd z+1

xdt



1d o n i ) P
~2 [wi’t (re ()5 @) + 0 e <Xt+1 (ct+1);wt+1>]log< Pt+1>
r 1,t
1L n. i X4 a1
5 20T @5+ Ty (i) log
= Xdt

n

+<1+%[A (cf52])+ A, (c t+1,mt+1):|>.lo <CZ+1>+O(A3>

t

where in the second equality we use Shephard’s lemma, as well as the definition of the first-order
nonhomotheticity correction function.

Next, we need to find an approximation to &, , , (¢/';z}). Applying Lemma A.1, we have

’pt—l—l’ t+l)

( )spt’ )
= Z[ ?)+wi,t+1<Xt+1(Ctn);m:l):|1 <Pzt+1>+O<A3>

it

E (M} (c
log 2, ,,,(c/'s2}) =log —
t,t+ t t E< ;

For the second term inside the square bracket in the expression above, we use Lemma A.1 to

obtain:
C?Z
141
-log< o >
C:C:t+] t

" awi,z+1 ()(z+1 (¢)s a:;’)

Wi 41 ()(:4—1 (Cfﬂ)?w?ﬂ) =W ()(z+1 COHH dlogc Jdlogc

”)4_1 <3wi,t+1 ()(t-s—l (C>,$tn>
2

18 (Pl Pon i) e)] ) (e
24 dlogx, ot dlogx, — & X7,
+0(A%).
Thus, we find:
b )
X (52)) . i
10g<t+1—n> =P (>8P, 157 41) (A.38)
Xt (Ct > )
1 c”
T T n 1
_Z[‘@z,tﬂ(c )+ 2, t+1< Coy> T t+1>j| 10g< ;:; >
1 D C@T (@T oon 1 dt-l—l O A3
4;[ dtH—l( )+ dtt+1<t+1’wt+1>]'0g x + < )
=1 .

where we have defined:

Pi 41
Yix) = -lo > ,
(Ct ,33 3 IOgC |:Z a)z t+1 Xt-i—l ) < p >i|

it

(@T

t,t+1
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J 1,t
(@dT,t,t-H (Cfn;w) = |:Z Wi r41 ()(H—l (C)§513> : log <_P s >i| .

dlogx, | 5 Pi

The remainder of the proof follows the same steps as the proof of Proposition A.2. O

A.2.2 Additional Lemmas

In this section, we derive the additional lemmas and propositions used in some of the steps of the

main proofs in Section A.2.1.

Lemma A.1. Consider a function f (x) defined in the space of x € RL. If f(-) is second order

continuously differentiable, we have:

f)—f(@)=2 == 0:—x)+0(3?), (A.39)

and if it 1s third order continuously differentiable, we have:

fw=r@=33| T2+ L0 o, —x)+0(), (A4

where we have defined § = max; |y, — x|

Proof. Using Taylor’s series expansion, we have

=5 @+ 2L D 6+ SR~ ().

From Taylor’s theorem, we have the bound|R, (y)| < %Bz where B, is the upper bound of the
value of the second order derivatives within the ball of radius |y — x| around x. This implies
that the absolute value of the residual can be bounded above by IZ—ZB2 8% =0(4?), which leads to
Equation (A.39).

Following similar steps, we can show that if function f is third order continuously differen-

tiable, we have:

f(y)zf(w)—FZ Sf(:c) (yi_xi)+lz gxfé(,m) (yi_xi)<yj_xj>+o<83>’

i i=19%i0X;

f@=f )+ LW )13 3 W )5, -5 )1 0(8)

2 i,j=1 7 il
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Together, the two equations imply:

fw—f =33 LY+ L6 —x)

=1

2 92 ;
*3 Z|:8xf3x 3xf§x>i|(y xi><yf_xf>+o<8 >

This gives us the desired result in Equation (A.40), since:

P fly) S (= Pf (x
dx;dx;  Ix 3x ngkax gx -
[l
Lemma A.2. Assume A = |log(y,,,/7,)| and A, = max; [log(p; .1/ pi,)|- If the expenditure

function is second order continuously differentiable, we have = O(A) where A =

max«{Ap,Ay}.

log(cf+1/cf>

Proof. We use a Taylor expansion of the expenditure function £ (M, (c); p) as a function of real
consumption ¢ around ¢ = ct}; and p, , noting that the expenditure function E (M (c);p) is

continuously differentiable in all its arguments, to obtain:
—1(.b \.
log<yt+1>:log<E(Mb <Ct+1>’pt+1>>,

7 E (M, (e7);p:)
c

pi c tb
:th (szb—i-l’pt-l-l) 10g< p’t+1>+b <Ctb+l3pt+l> log< CJ;>,

i,t t

where the values of /J < 1D, +1> and h¢ < ¢/ >D, +1> are bounded by the maximum value of the

gradient of E( ) Y(c ),p) in the ball around <p[, ; ) with radius ‘(ptﬂ,cf“) (p[, ; ) ‘ We

b
‘Iog < Ct—i—l >
Ct

for some M > 0. ]

thus have:

<MA,

Lemma A.3. Assume that we observe (y",x")\_, such that

Y=l

x"=z"+7",

A20



where z" is some underlying unobserved variable and where |¢"| < B, A, and |v"| < B, 8, for some

finite values of A, and &,
If observed and underlying variables are scalars y”,2",x" € R, we assume the following cond;-

tions are satisfied:

1. z" is distributed according to a probability distribution function that is bounded away from
zero over the interval [ z,7].

2. The function f(-) is continuously differentiable of order m over the interval 2,7z
3. Functions g, (z) denote Legendre polynomaals of order k < K.

If instead the observed and underlying variables are vectors y*,z",x" € R/ for | > 2, we assume the
Jollowing conditions are satisfied:

1. Underlying vectors z" belong to a Cartesian product of compact connected intervals, such that

its probability distribution is bounded away from zero over this set.

2. The function f(-) is an analytic function, that is, continuously differentiable of order m for any

positive integer m, over the same compact connected set where z” is defined.

3. Functions g, (z)’sareof theform g, (z) =], gk < > where z; isan element of the | -dimensional
vector z and where §kj (z) is the Legendre polynommls of order k; such that 37 k; < K.

Now, consider the nonparametric approximation of function f (-) define by letting coefficients (@, )I/:i .
solve the following problem:

(

N 2
IK Z<J’"—Zakgk(xn)> - (A.41)
a/e/e 1 k

Then, we can bound the errors in the approximations of the derivatives of function f (-) according to

ZA <K <\/% A +K;"”‘“>> +0(8,), (A42)

for any element z; of z.

Proof- Define g(z) = [go (z),_ 8 (2), 5 8k, (z)]t where superscript ¢ stands for the trans-
pose of the matrix and where K, denotes the number of Legendre functions defined in the state-

ment of the lemma that satisfy 3, k; < K. Let



and define

(G'G) ' G'y,
()G )Y (G)y

a
«a

The proof closely replicates the arguments in the proof of Theorem 1 of Newey (1997) for the
case of power series, approximating the derivatives of the function to establish the convergence
rate for the approximation based on G*. First, note that Assumptions 1 and 2 in the statement of
the lemma correspond to Assumptions 8 and 9 of Newey (1997). The discussion in Newey (1997,
page 157) shows that Assumption 3 is satisfied for the first derivative function such that:"?

—(m—1
sup |f'(z) Zozkg/e <KN<m )>,
2€[z,7]
sup ||(&(2),+» gk, (z H =
z€[z,7]
where ||---|| corresponds to the Euclidean norm, and where m is any arbitrary integer number

in the case of ] > 1 where function f is analytic. It follows from the same steps as in the proof of
Theorem 1 of Newey (1997) that:

/ _ & %/ O 3 KN AZ —(m—1)
f(z2)=> a8 (2)+ | K ~ ct+Ky, .
k=0

with the only difference being the fact that here E[¢ ¢, ] is not a constant in our case, but instead
we have E[e ¢, ]= O (A2).
t
Define g’ (z) = [gé (2), 8¢ (z)} and note that:
N

G=G +[g/(x") 0", g/ (x")-0"] +O(82),

which implies:

a=a"+0(3)).

A2In the notation of Newey (1997), this case correspondsto r =], d = 1,s = m,a = m—1, and 2d + 1 = 3.
When J > 1 and the function is analytic, then the bound holds for any positive integer a, including 7 — 1.
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Equation (A.42) then follows from the observation that:

Ky Ky
> apgi(z)— > ag(z2)=0(3,).
k=0 k=0

]

Lemma A.4. Assume that the expenditure function E (-;-) is second-order continuously differentiable.

Then the growth in real consumption between periods t, and t satisfies

c/ 1 Yo/
] ) — | 177t O (A?), A.43
°g<c;»> T AL, () °g<w (cf)>+ (&%) (A.43)

t+1 t,t+1

where A = max {Ap, A, }, with A and A, defined as in Equation (13)

Proof. First, note that we have:

log<ﬁ> = log<E 1, <C[b+1>;pt+1>> :

: E (M, (e7)ip:)

Using a first-order Taylor expansion of the left-hand-side of the equation above in terms of ¢?, as

well as Lemma A.2, we obtain:

1Og<yt+l>:10 E<Mb_1<c1b>;pt+1> 810%E<Mb_1 (Cb>;pt>

E(; (i) Tloge

i
-log< : >+O A?).
Y, . ¢/ ()

—t

]

Lemma A.5. If the expenditure function E (-;-) is continuously differentiable of order at least 3, then

we have

ct 1 Vi1
10g< t+1> — 10g< t+1/ 7t > 4+ [0) A3 , (A44)
¢/ 1+%[A? <Ctb>+Atb+1 <Ctb+1>:| Py <pt’st;p”+1’8t+1> < >

where A = max {Ap’ A }, with A, and A, defined as in Equation (13).

o2 ) g L )

: E (M, (7 )ip:)

Proof. We start with:

A23



and we use Lemma A.1 for a vector of variables (p, ¢)’ to find:

o )= 3 [ Lo )

dlogE (M, (c);p)

~10g<

% 25 Jlogp, (esp)=(c:5p,) Jlogp, (esP)=(CoriiPrsr)
AlogE (M (c); dlogE (M (c);
+1 g ( b()p> n g < b(>p> -log<ﬂ
2 dlogc Jdlogc ¢,

(csP)=(ep,) (esP)=(Cr15Pe11)

+0(4A%),

1< b Pi1
:E [ it Xt (C +a)z’,t+1 ()(t-f—l(ct—i-l)):llog

Pis
+< e+ ] o

> +0(4%),
€
where in the second equality we use Shephard’s lemma, as well as the definition of the first-order

nonhomotheticity correction function. O

B Additional Simulation Results

In this appendix, we report additional results from our illustrative simulation exercise in Section
2.4 in the main text. We first show how the mapping between real consumption and total ex-
penditure y? (-) changes over time depending on the covariance between income elasticities and
inflation across products. We then use the simulation to assess the accuracy of our algorithm in

estimating changes in real consumption over time.

The Evolution of the Mapping between Real Consumption and Expenditure We docu-
ment how the mapping between real consumption and expenditure y? (-), defined in Equation
(2), evolves over time, depending on the sign of the covariance between income elasticity and in-
flation. We first consider the case with a positive covariance, which is illustrated in Figures B.1a
and B.1b. These figures compare the mapping in terms of real consumption between the nonho-
mothetic and homothetic specifications, with the initial (b = 0) and the last (b = 70) periods as
the base, respectively.*? The figures depict how the expenditure functions change over time in
each case.

In the homothetic case, the expenditure function always has a log-linear form. Due to the

overall inflation in prices, the expenditure function uniformly shifts upward over time for the

A3Specifically, we compare the nonhomothetic specification against a homothetic CES specification with
(0,6,,6,,,¢,)=1(026,1,1,1).
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Figure B.1: Example: The Expenditure Function y/(-)

(a) Positive Covariance/Initial Base (b = 0) (b) Positive Covariance/Initial Base (b = 70)
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Note: The figure shows the change over time in the mapping between real consumption and expenditure, for the preferences defined in
Equation (21) with parameters corresponding to a nonhomothetic CES (o,¢,,¢,,,¢,) = (0.26,0.2,1,1.65) (nhCES) and homothetic CES
(0,64, ,¢,)=(0.26,1,1,1) functions. Panels (a) and (b) show the results for initial and final periods as the base for the case with positive in-
come elasticity-inflation covariance, respectively. Panels (c) and (d) show the same results for the case with negative income elasticity-inflation
covariance.

homothetic CES preferences.

In the nonhomothetic case, let us first consider the initial period as the base in Figure B.1a. By
definition, the mapping begins as the identity function in the initial base period. As time passes,
the costs of achieving higher levels of real consumption rises faster, since to achieve these higher
levels households need to shift their consumption toward goods featuring higher inflation. Thus,
the mapping y? (-), which characterizers the expenditure function in terms of real consumption,

increasingly deviates from linearity and becomes more convex as time passes. The figure shows
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that, compared to the homothetic case, the upward shift in the expenditure function is larger for
higher levels of real consumption.

Next, consider the final period as base as in Figure B.1b. By definition, in this case themapping
is the identity function in the final period. As we move backward in time, the costs of achieving
higher levels of real consumption falls faster, since to achieve these levels of welfare households
shift their consumption toward necessity products, whose were relatively more expensive in the
past. Thus, the mapping increasingly deviates from linearity and becomes more concave as we
move toward the initial period. The simulation thus illustrates that, regardless of the choice of
the base period, the expenditure function is more convex in later periods under nonhomothetic
preferences with a positive income elasticity-inflation covariance.

Figures B.1c and B.1d examine the same patterns in the case with a negative covariance be-
tween price inflations and income elasticities. In this case, the mapping becomes more concave
over time, since now consumers shift the composition of their expenditures toward goods that
have lower inflation. With the initial period as base, the mapping begins with a log linear form
and becomes more concave as we move forward in time. With the final period as base, the map-
ping ends with the identity function in the last period and becomes more convex as we move

backward in time.

Accuracy of the Approximation  Figures B.2a-B.2d documents the errors in the measurement
of real consumption, using the first-order nonhomotheticity correction following Algorithm 1
or implementing the standard, uncorrected homothetic formula. As previously, the results are
reported for different base periods and income elasticity-inflation covariances. To carry out this
analysis, we use the underlying preference parameters to compute the correct value of the real
consumption ¢/ for each houschold 7 at each point in time ¢, and compare that value with the
approximate value ¢ found with our algorithm or with the standard, uncorrected measure.
The figure shows that the standard approach leads to substantial errors in the inferred mea-
sures of real consumption. Under the set of parameters considered here, after 70 years, this error
grows for some households to be of the same order of magnitude as the correct real consumption.
In contrast, applying the first-order correction of Algorithm 1 reduces the error by several orders
of magnitude. Thus, the simulation shows that the algorithm can correct for the errors in the
standard approach to measuring real consumption growth that stem from nonhomotheticity.
Finally, Figures B.3a-B.3d compare the sizes of the approximation error with the first-order
approximation approach of Algorithm 1 or the recursive approach of Algorithm A.1. The figures
highlight that the second-order approximation of Algorithm A.1 leads to lower approximation

€rrors.
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Figure B.2: nhCES Example: Nonparametric Approximation of Real Consumption

(a) Positive Covariance/Initial Base (b = 0) (b) Positive Covariance/Final Base (b = 70)
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Note: The figures compare the error in the approximate value of real consumption between the geometric price index formula and the one
corrected based on the first-order Algorithm 1. The correct value of real consumption is calculated based on the underlying parameters
of the nhCES preferences. The panels show the error for the choices of base period (a) # = 0 and (b) 4 = 70 with the positive income
elasticity-inflation covariance and (c) » =0 and (d) » = 70 with the negative covariance.

Extension to Other Values of Inflation-Income Elasticity Covariance To show how the re-
sults extend to other ranges of the values of covariance between price inflations and expenditure
elasticities, we perform one last exercise with our illustrative simulation. We consider alterna-
tive trends in prices, varying the deviations between inflation in services and agriculture from
that in manufacturing (fixed to the average level of 3.19%) symmetrically from -2% to +2%. As
previously, we compare the chained measures of deflated nominal consumption growth with and

without our correction. Figure B.4 reports the error in the approximated values of average real
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Figure B.3: nhCES Example: Second vs. First-order Correction

(a) Positive Covariance/Initial Base (b = 0) (b) Positive Covariance/Final Base (b = 70)
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Note: The figures compare the error in the approximate value of real consumption between the the first-order and second-order algorithms.
The correct value of real consumption is calculated based on the underlying parameters of the nhCES preferences. The panels show the error
for the choices of base period (a) 4 = 0 and (b) » = 70 with the positive income elasticity-inflation covariance and (c) 4 =0 and (d) b =70
with the negative covariance.

consumption, depending on the choice of the base period.** As previously, the figure considers
two cases, with either positive or negative income elasticity-inflation covariances.

The figure shows that, when income elasticities are uncorrelated with the level of inflation
across goods, the uncorrected measures approximate the correct values with negligible errors.
However, as the covariance deviates from zero, the bias in the uncorrected measures grows. Asthe

covariance falls to around -0.6% per year, the error in the uncorrected measure grows to around

A*We focus on the period that is most distant from the base period so that the error can potentially cumulate.
Thus, we report the error in the final period when the initial period is taken as base. Symmetrically, we report the
error in the initial period when the final period is taken as base.
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Figure B.4: Example: Real Consumption Error and Income Elasticity-Inflation Covariance
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20% of the average real consumption.** In contrast, the error in the approximation achieved
with our nonhomotheticity correction remains close to zero over the entire range of values of

the covariance, which highlights the accuracy of our algorithm.

C Data Appendix

In this appendix, we describe the data construction steps for our main analysis dataset, as well as

for robustness checks.

C.1 Dataset for the Main Analysis

Our main analysis dataset covers the period from 1955 to 2019, combining price series from

the Consumer Price Index (CPI) to household expenditure data from the consumer expenditure
survey (CEX).

Consumer Price Index dataset The Consumer Price Index (CPI) data series contain monthly

or quarterly price indexes for over 200 detailed product categories. The price series are avail-

A5 As the covariance grows above zero, the error initially rises but ultimately begins to fall for large and positive
values of covariance. This is because those scenarios lead to negligible growth in average household real consumption,
which mechanically reduces the size of the bias in the reduced-form indices.
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able over various time frames.*® To obtain a balanced panel of inflation series derived from the
CPI price indexes, whenever a category is missing we use a more aggregate series in the product
hierarchy as proxy, since higher-level series usually have longer time coverage.” The category-
level inflation rate is obtained by averaging these price series at the desired frequency (annual or

quarterly).

Consumer Expenditure Survey datasets from 1984 to 2019 We obtain household expendi-
tures from the Consumer Expenditure Survey (CEX) public-use microdata.** Specifically, we use
the interview survey data, which covers the full consumption basket from 1990 to 2019. Sampled
households are interviewed at a quarterly frequency for four to five consecutive rounds, and re-
port monthly expenditures at the Universal Classification Code (UCC) level for the three months
prior to the interview month in each round. Households also provide socio-demographic charac-
teristics in each quarter of the survey, such as annual income and age of all household members.
We use self-reported before-tax annual income prior to 2004 and imputed annual income in or
after 2004 to classify households into income groups (e.g., deciles, quintiles, or percentiles) in
each quarter.”’

We restrict the expenditure data to only include the UCCs that appear in the annual hier-
archical grouping auxiliary files provided by BLS. Indeed, these auxiliary files define the set of
relevant UCCs that BLS uses to produce the CE summary tables of household expenditures by
socio-demographic characteristics.*'° Furthermore, we exclude the UCCs belonging to the cate-
gories “pensions & social security”, “life and other personal insurance”, and “education”, which
are long-run investments.*!" We thus obtain a dataset containing 598 UCC product codes.

We benchmark our data against official estimates provided by the BLS in CE summary tables.

Using the expenditure microdata for the relevant product UCCs, we calculate average annual

A®The data is available at https://download.bls.gov/pub/time.series/cu.

A7For example, series CUURO000SEME (Health insurance) is a level 2 series beginning in 2005; filling it back
to 1955 requires using level 1 series CUSROO00SAM2 (Medical care services) for 1957 to 2005 and level O series
CUSRO000SAM (Medical care) for 1955 to 1956.

A8The data is available at https: //www.bls.gov/cex/pumd_data.htm.

A9The main dataset is restricted to households with strictly positive before-tax income. In a robustness check, we
keep houesholds with zero imputed income from 2004 onwards. The results are similar (unreported).

Al0The hierarchical grouping auxiliary files are only available back to 1997, so we apply the UCC restric-
tion as specified in the 1997 file to earlier years with minor adjustments that come from comparing our
estimates of average annual expenditure by product and income quintile with the CE tables from 1990 to
1996. The CE summary tables can be found at: https://www.bls.gov/cex/tables/calendar-year/
mean-item-share-average-standard-error.htm (2012 onwards); https://www.bls.gov/cex/csxstnd.
htm (prior to 2012).

AllFor these categories, changes in returns to investment - and therefore the effective inflation rate for these cate-
gories — are difficult to measure accurately. Building a nonhomothetic price index accounting for savings and invest-
ment behavior is an important direction for future research, which is outside of the scope of this paper.
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expenditure for 32 product categories*'? by income quintiles. Our results closely approximate
the values reported in the CE summary tables, but we do not match them exactly because CE
summary tables source expenditure data from both interview and diary surveys, while we only
utilize interview data. To be exactly consistent with the annual consumption patterns published
by BLS, we compute a scaling factor to adjust the expenditure microdata by the ratio between CE
table values and our estimates, such that all average annual expenditures match the CE summary
tables exactly, for each of the 32 product categories and income quintile.*"?

BLS provides monthly expenditure microdata by UCC and households starting in 1990 only;
data prior to this date require special treatment. From 1980 to 1989, CEX microdata files are not
suitable for our analyses. Indeed, for the period 1982-1989, BLS does not provide expenditure
microdata at the UCC level. Moreover, in 1980 and 1981, expenditure microdata contain many
legacy UCC:s that were no longer in use in 1997, which is the earliest year for which the hierar-
chical grouping auxiliary files are availalble; therefore we cannot reliably define the universe of
relevant UCC:s for these two years. However, the BLS provides CE summary tables from 1984
onward,*!* which we combine with the 1990 microdata to obtain expenditure patterns from 1984
to 1989. Specifically, we assume that the expenditure shares for any given income group within
each of the 32 product categories remain the same as in the 1990 microdata, and we use the CE
summary table to adjust expenditure shares for each of the 32 categories from 1984 to 1989. The
scaling factors are computed at the level of before-tax income quintile and the 32 product cat-
egories from CE summary tables in each year. We then aggregate the microdata and calculate
average annual expenditures for the desired income groups and product categories. For the main
analysis dataset, we compute the average annual expenditures at the “before-tax income percentile
by UCC?” level, using household project weights provided by CEX.A!

In all analysis and robustness datasets, we include a set of seven household characteristics that

can serve as controls in regression specifications: (1) the raw number of household members; (2)

A2The 32 product categories are: food at home; food away from home; alcoholic beverages; shelter; utilities, fuels,
and public services; household operations; household furnishings and equipment; clothes for men and boys; clothes
for women and girls; clothes for children under 2; footwear; other apparel products and services; vehicle purchases
(net outlay); gasoline, other fuels, and motor oil; other vehicle expenses; public and other transportation; health
insurance; medical services; prescription drugs; medical supplies; fees and admissions; audio and visual equipment
and services; pets, toys, hobbies, and playground equipment; other entertainment supplies, equipment, and services;
personal care products and services; reading; education; tobacco products and smoking supplies; miscellaneous; cash
contributions; life and other personal insurance; pensions and social security.

ABThe scaling factor is applied to each of the “product categories by income quintile” cells.

A*CE summary tables from 2012 to 2020 can be found here. Historical summary tables from 1984 to 2011 can be
found here.

Al5Since we use calendar year as the time unit, and households that are interviewed in February and March report
expenditures across two calendar years, we apply an adjustment to the survey weights as instructed by Section 6 of
the Consumer Expenditure Surveys Public Use Microdata Getting Started Guide, which can be found here.
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family size with adjustment based on the OECD-modified equivalence scale;*'® (3) family size
after restricting to members aged 18 and over; (4) the average age of all household members; (5)
the average age of all household members aged 18 and over; (6) household race*'; (7) the highest

level of education among all household members.*!®

Consumer Expenditure Survey datasets from 1955 to 1983  We also build a dataset tracking
households’ expenditure patterns back to 1955, using the expenditures shares at the level of 32
product categories in 1984, 1972 and 1960 documented in available CE summary tables.*"”

The 1972 table provides annual average expenditures by income decile for 42 product cate-
gories. We harmonize these items with the 32 product categories available in summary tables
available from 1984 onward. Using the average annual expenditure levels by product categories
and income decile in 1972 and 1984,%° we interpolate expenditure shares in each of the inter-
vening years, assuming constant increments in expenditure shares for each product category and
income decile.*?! As previously, we keep expenditure shares for any given income group within
each of the 32 product categories at the level observed in the 1990 microdata.

We follow analogous steps using the 1960 CE summary table, which provides annual average
expenditures for nine income brackets and 19 product categories, which we link to the 42 prod-
uct categories observed in 1972 by building a one-to-many crosswalk. To create meaningfully
comparable income groups between 1960 and 1972, we first convert the data structure from the
nine income brackets to income deciles.*?> We then interpolate expenditure shares between 1960

and 1972. We thus obtain a dataset matching CE summary tables exactly back to 1960. Given

Al6 According to the OECD-modified equivalence scale, the first adult in a household has an equivalence value of
1; any additional adult or child aged 14 and over has an equivalence value of 0.5; any child aged 13 and under has an
equivalence value of 0.3.

A7The majority race is chosen as to represent the household. In the event of a tie, the household race is randomly
determined.

A8When aggregating the data to the level of pre-tax income percentiles, for household race and highest level of
education, we convert each factor variable into multiple variables capturing the percentage of households corre-
sponding to each distinct value. Therefore, we have five variables expressed in precentages for race (Asian or Pacific
Islander, Black, White, Native American, Multi-race or Other), and eleven variablesor highest level of education
(Never attended, Some or completed elementary school, Some or completed middle school, Some high school (no
diploma), High school graduates, Some college (no diploma), Associate or professional degree, Bachelor’s degree,
Some graduate school (no diploma), Master’s degree, Doctorate degree).

APrior to 1990, we do not have reliable microdata at the household or UCC level but annual CE summary tables
on household expenditures are available by socio-demographic characteristics back to 1984. Prior to 1984, we do
not have CE summary tables except for years 1972 and 1960, which can be downloaded here and here.

A2BLS only provides summary expenditure table by income decile in 1972, and by income quintile in 1984. To
harmonize the income class and allow for direct comparisons, we first compute scaling factors at the level of income
quintiles using the 1984 table as benchmark. The scaling factor is applied to households depending on the income
quintile they belong to, and we then aggregate the household-level data to the level of income percentiles.

A21Results with alternative interpolation methods are similar (unreported).

A22We translate the boundaries of income brackets into percentiles using the 1960 before-tax income distribution
in the U.S.; we then assign income brackets to income deciles to maximize overlap.
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that there is no CE table prior to 1960, we assume expenditure shares remain constant for the
period 1955-1960.

Finally, as with the main analysis dataset from 1984 to 2019, after making adjustments by the
scaling factors from the historical CE summary tables, we aggregate the microdata to “before-tax

income percentile by UCC” cells in each year.

Data on consumption expenditures by income and age Following the same data construc-
tion steps as for the main dataset on consumption expenditures by income groups and products,
we build an alternative dataset aggregating households into “income decile by age decile” cells.
Specifically, households are first assigned into before-tax income deciles, then further divided into
age deciles within each income decile based on the average age of all adults in the household.**
Just like the main dataset, the microdata is adjusted so that we exactly match the CE summary
tables by income quintile from 1984 to 2020, as well as in year 1960 and 1972. As previously, we
use interpolation to obtain expenditure shares in intervening years. As a robustness check, we
calculate alternative scaling factors using CE summary tables by household head (reference per-
son) age bracket instead, while keeping all other data treatment unchanged, which yields similar
results (unreported).

Since the size of the bias from the household aging correction is governed by changes in av-
erage age over time, it is important to check the accuracy of the age data. We check that average
age in our household survey data matches the benchmark series of the UN World Population
Prospects. Average age in our data is close to this external benchmark. To guarantee an exact
match, we apply a year-specific scaling factor to the age variable in our data; this scaling factor is
the same for all households in a given year. For all years prior to 1984 in which the CE summary
tables are not available, we use the benchmark series of the UN World Population Prospects to

impute average household age.

Linking consumption and price datasets To link the CPI price series to household expendi-
tures from the CEX, we manually build a crosswalk, starting from the UCC to CPI concordance
provided by BLS*?* and extending coverage back in time. All expenditure categories are mapped
to at least one inflation series from the CPI price data.**® Our main dataset is thus at the UCC

level and includes 598 unique product codes that map to 159 CPI inflation series.

ABThe average age of all adults in the household is calculated by averaging the age of all household members at or
above the age of 18.

A%The up-to-date UCC-ELI concordance can be found here: https://www.bls.gov/cpi/
additional-resources/ce-cpi-concordance.htm.

A2While most UCCs are mapped to a single CPI categories,when there are more than one relevant CPI series, we
take the simple average of all relevant series to obtain the price change for that UCC.
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Year-specific scaling factor to match BEA’s aggregate personal consumption expenditure
For all datasets, we ensure that we match BEA’s aggregate personal consumption expenditures.
We apply a year-specific scaling factor to the household consumption data so that we match the
BEA’s nominal personal consumption expenditure per household in each year. This step is useful
for our purposes since the bias from the nonhomotheticity correction depends on consumption
growth over time, and since household expenditure surveys are known to miss some expendi-
tures. Our approach allows us to compute inflation inequality in an empirical setting that is fully
in line with the average nominal consumption growth observed in the U.S. national accounts.
This scaling step follows the spirit of distributional national accounts of Piketty et al. (2018),

ensuring that our analysis is consistent with macroeconomic aggregates.

C.2 Datasets for Sensitivity Analysis

We build four alternative datasets to assess the robustness of our findings to data construction

choices.

Sensitivity to aggregation level: robustness datasets #1, #2 and #3  To assess whether our
results are sensitive to aggregation choices, we build two alternative datasets which closely follow
our main dataset but use different levels of aggregation, grouping UCCs into broader categories.
First, we create a version of the datast using the 32 product categories from CE summary tables.
The crosswalk between UCCs and the 32 CE table product categories is provided in the hier-
archical grouping auxiliary files. Second, we manually group the 598 UCCs into 119 mutually
exclusive product categories that are continuously available from 1984 to 2019.4%

In addition, we use Nielsen scanner data for consumer packaged goods to implement Algo-
rithm 1 on highly disaggregated data. The main product categories covered in the Nielsen data are
food and drinks at home, housekeeping supplies, household cleaning products account, as well as
personal care products, smoking products, tableware, tools, nonelectric cookware, and apparel.
These product categories account for 13.39% of overall household spending, which corresponds
to close to 40% of expenditures on goods. We conduct the analysis at the level of “product mod-

ules by price decile” cells, as in Jaravel (2019).

Sensitivity to official aggregate expenditure weights in CPI: robustness datasets #4 The

fourth alternative dataset for robustness is based on the official consumption weights used by

A2These two robustness datasets allow us to compute additional price indices which require observing the same
set of product categories between consecutive periods, e.g. a Tornqvist price index. In contrast, there is substantial
churn for UCC items across years.
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1A% We use the official consumption

the Bureau of Labor Statistics when calculating the CP
weights for eight product categories that are available every year back to 1955. The eight broad
product categories included in this dataset are: food and beverages, housing, apparel, transporta-
tion, medical care, recreation, education and communication, other goods and services. Due to
the evolution of product categories and product hierarchy over the years, some sub-categories
are reassigned by BLS from one broad category to another over time. For example, BLS places
“Telephone services” under housing until 1997, then under “Education and communication.” To
address this issue, we adjust the placement of certain sub-categories and their allocated weights
so that the composition of broad categories remains consistent from 1955 to 2019.

In addition to the aggregate consumption weights, our linked dataset uses expenditure shares
by income quintiles from the CE summary tables published by the BLS, which are available from
1984 onwards, as in the main dataset. Prior to 1984, we assume the expenditure shares to remain
identical to 1984. We use the expenditure shares of each income quintile to distribute aggregate
consumption across income groups, so that we obtain a linked dataset with consumption patterns
that vary across income groups while keeping aggregate, category-level consumption weights
identical to the official weights of the BLS for their eight product categories that can be tracked
back to 1955.

AZ%The official consumption  weights are available at https://www.bls.gov/cpi/tables/
relative-importance/home.htm. They can differ from the expenditure patterns reported in the CE sum-
mary tables.
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D Additional Figures

Figure D.1: Additional Evidence on Inflation Inequality over Time

(i) Inflation inequality, 1984-2019
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The specification includes year fixed effects. The sample run from 1984 to 2019.
Each bin represents 1% of households.

(i11) Stronger inflation inequality, 1995-2019
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The specification includes year fixed effects. The sample run from 1995 to 2019.
Each bin represents 1% of households.

(v) Annualized Geom. Index, 1984-2019
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(i1) Weaker Inflation inequality, 1984-1995
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The specification includes year fixed effects. The sample run from 1984 to 1995.
Each bin represents 1% of households.

(iv) Inflation inequality, 1955-1983
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The specification includes year fixed effects. The sample run from 1955 to 1983,
Each bin represents 1% of households.

(vi) Annualized Geom. Index, 1955-2019
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Note: This figure reports descriptive patterns on inflation inequality. In panels (i) through (iv), households are grouped by pre-tax income
percentile in each year. These panels report binned scatter plots depicting the relationship between the annual inflation rate and log nominal
consumption, absorbing time fixed effects. Each dot represents 1% of the data and all panels use the geometric price index. Panels (v) and (vi)
report the annualized inflation rate, for the period 1984-2019 and 1955-2019 respectively, using the chained geometric index.
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Figure D.2: Nonhomotheticity Correction and the Consumption Deflator

(i) 2019 price level with 1984 base prices  (i1) 1984 price level with 2019 base prices
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Note: This figure reports the chained index formula, IT, 7, compared with the corrected non-homothetic deflator, 37 /c”.

Figure D.3: Biases in 1984-2019 Cumulative Real Consumption Growth by Income Percentile

(i) with 1984 base prices (i1) with 2019 base prices
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Note: This figure compares the magnitude of biases in the measurement of cumulative consumption growth from 1984 to 2019, reporting the
deviation from the aggregate homothetic price index due to (a) percentile-specific homothetic price indices, and (b) due to the nonhomotheticity
correction. Panel (i) uses 1984 prices as base for the nonhomotheticity correction, while panel (ii) uses 2019 prices. The bias from percentile-
specific indices is identical in both panels.

Figure D.4: Cumulative and Annualized Growth Rates across Price Indices

(i) Cumulative growth, 1955-2019 (i1) Annualized growth, 1955-2019
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Note: This figure reports cumulative and annualized growth rates from 1955 to 2019 for three price indices, paasche, fisher and laspeyres.
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Figure D.5: Sensitivity Analysis for the Annual Bias in Real Consumption Growth

Panel A: Alternative price indices and second-order algorithm
(1) with 1984 prices as base (i) with 2019 prices as base
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Panel B: Robustness to controls
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Note: This figure report the biases in annual aggregate real consumption growth per household due to the nonhomotheticity correction under
different specifications. Panel A reports the results under alternative price indices, geometric or fisher, with the first-order algorithm, as well
as with the second order algorithm. Panel A(i) uses 1984 prices as base, while Panel A(ii) uses 2019 prices. Panel B reports the results with the
geometric index and the first order algorithm, controlling for education, age and race in the estimation of the income elasticity of inflation.
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Figure D.6: Results with 32 Product Categories, 1984-2019

(a) Bias in the Level of Real Cons. (b) Annual Bias in Real Cons. Growth
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Note: This figure is identical to Figure 3 in the main text, except that we use our robustness dataset #1, i.e. we work with data at the level of
32 product categories from the CE summary tables. This figure report the biases in the level of aggregate real consumption per household, in
panel (a), and in annual growth in real consumption per household, in panel (b). The bias is computed by applying Algorithm 1 to obtain the
nonhomotheticity correction. We then compare standard measures of real consumption to corrected measures. In panel (b), the bias is expressed
as a percentage of the standard homothetic measure of current-period growth. Algorithm 1 is applied to our robustness dataset #1 at the level

of pre-tax income percentiles, using geometric price indices. We then aggregate percentile-level results to obtain aggregage real consumption per
household.

Figure D.7: Results with 114 Product Categories, 1984-2019

(a) Bias in the Level of Real Cons. (b) Annual Bias in Real Cons. Growth
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Note: This figure is identical to Figure 3 in the main text, except that we use our robustness dataset #2, i.e., we work with data at the level of 114
product categories that are continuously available between 1984 and 2019. This figure report the biases in the level of aggregate real consumption
per household, in panel (a), and in annual growth in real consumption per household, in panel (b). The bias is computed by applying Algorithm
1 to obtain the nonhomotheticity correction. We then compare standard measures of real consumption to corrected measures. In panel (b), the
bias is expressed as a percentage of the standard homothetic measure of current-period growth. Algorithm 1 is applied to our robustness dataset
#2 at the level of pre-tax income percentiles, using geometric price indices. We then aggregate percentile-level results to obtain aggregage real
consumption per household.
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Figure D.8: Results for Fast-Moving Consumer Goods with 9131 Product Categories, 2004-2014

(a) Bias in the Level of Real Cons. (b) Annual Bias in Real Cons. Growth
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Note: This figure is identical to Figure 3 in the main text, except that we use our robustness dataset #4, i.e., we work with data at the level of 9131
product categories that are available in the Nielsen Homescan Consumer Panel Data between 2004 and 2019 This figure report the biases in the
level of aggregate real consumption per household, in panel (a), and in annual growth in real consumption per household, in panel (b). The bias
is computed by applying Algorithm 1 to obtain the nonhomotheticity correction. We then compare standard measures of real consumption to
corrected measures. In panel (b), the bias is expressed as a percentage of the standard homothetic measure of current-period growth. Algorithm
1 is applied to our robustness dataset #4 at the level of pre-tax income deciles, using geometric price indices. We then aggregate decile-level results
to obtain aggregage real consumption per household.

Figure D.9: Results with Official CPI Aggregate Expenditure Weights, 1955-2019

(a) Bias in the Level of Real Cons. (b) Annual Bias in Real Cons. Growth
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Note: This figure is identical to Figure 3 in the main text, except that we use our robustness dataset #3, i.e., we work with use official CPI
aggregate expenditure weights for eight broad expenditure categories to rescale the household-level expenditure patterns, thus ensuring that our
data is consistent with aggregate expenditures used by the BLS when computing the CPL This figure report the biases in the level of aggregate
real consumption per household, in panel (a), and in annual growth in real consumption per household, in panel (b). The bias is computed
by applying Algorithm 1 to obtain the nonhomotheticity correction. We then compare standard measures of real consumption to corrected
measures. In panel (b), the bias is expressed as a percentage of the standard homothetic measure of current-period growth. Algorithm 1 is applied
to our robustness dataset #3 at the level of pre-tax income percentiles, using geometric price indices. We then aggregate percentile-level results to
obtain aggregage real consumption per household.
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Figure D.10: Inflation across Age Groups and over Time

(i) 1955 to 2019

.036 .038 .04
L L L

Log Geometric index (annual)

.034
L

0 20 4

0 6
Average age of household members

80

The specification includes year fixed effects. The sample run from 1955 to 2019.

Each bin represents 1% of households.

(ii) 1955 to 1983
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The specification includes year fixed effects. The sample run from 1955 to 1983
Each bin represents 1% of households.

(iii) 1984 to 2019
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The specification includes year fixed effects. The sample run from 1984 to 2019,
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Note: This figure reports binned scatter plots depicting the relationship between the geometric index and the average age of household members.
Each panel focuses on a different period. In each panel, each bin represents 1% of households. In each year, the unit of osbervation is “age decile

by income decile” cells. All specifications include year fixed effects.

Figure D.11: Average household age over time in the United States
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Note: This figure reports the change in average household age over time.
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